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1 Let Y be a real-valued random variable with E(|Y |) < ∞, and with continuous,
strictly increasing distribution function F . For τ ∈ (0, 1), let ρτ (y) = τy1{y>0} + (1 −
τ)|y|1{y<0}. Find the unique minimiser, qτ , of E{ρτ (Y − q)} over q ∈ R.

Now suppose (X1, Y1), . . . , (Xn, Yn) are independent and identically distributed pairs
taking values in R

m ×R and satisfying

Yi = g(Xi, θ0) + ǫi, i = 1, . . . , n,

where θ0 ∈ Θ ⊆ R
p. Assume that E(|ǫ1|) < ∞ and that the conditional distribution

function of ǫ1 given X1 is continuous and strictly increasing with τth quantile zero.
Suppose further that g is a known, bounded, continuous function and that P{g(X1, θ) =
g(X1, θ0)} = 1 if and only if θ = θ0. Let

θ̂n ∈ argmin
θ∈Rp

1

n

n
∑

i=1

ρτ
(

Yi − g(Xi, θ)
)

.

Prove that if Θ is compact and if

sup
θ∈Θ

∣

∣

∣

∣

1

n

n
∑

i=1

ρτ
(

Yi − g(Xi, θ)
)

− E
{

ρτ
(

Y1 − g(X1, θ)
)}

∣

∣

∣

∣

p
→ 0,

then θ̂n
p
→ θ0 as n → ∞.

[General results about M -estimators should not be used without proof.]
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2 Consider the linear model Y = β01n+Xβ+ǫ, where the columns of the deterministic
design matrix X = (x1, . . . , xp) ∈ R

n×p are centred and have ‖xj‖
2
2 = n for j = 1, . . . , p,

and where ǫ ∼ Nn(0, σ
2I). Define the Lasso estimator β̂L

λ of β with regularisation
parameter λ > 0.

Let S =
{

j ∈ {1, . . . , p} : βj 6= 0
}

, let N = {1, . . . , p} \ S, and let s = |S|. For

an arbitrary A ⊆ {1, . . . , p} and b ∈ R
p, we write bA for the vector in R

|A| obtained by
extracting the components of b with indices that are in A. Assume that there exists φ0 > 0
such that for all b ∈ R

p with ‖bN‖1 6 3‖bS‖1, we have

‖bS‖
2
1 6

s‖Xb‖22
nφ2

0

.

Prove that if λ = Aσ

√

log p
n for some A > 0, then with probability at least 1− p−(A2/8−1),

we have
1

n
‖X(β̂L

λ − β)‖22 + λ‖β̂L
λ − β‖1 6

16A2

φ2
0

σ2s log p

n
.

[Tail probability bounds for normal random variables should not be used without
proof.]

3 Consider the linear model Y = β01n+Xβ+ǫ, where the columns of the deterministic
design matrix X = (x1, . . . , xp) ∈ R

n×p are centred and satisfy ‖xj‖
2
2 = n for j = 1, . . . , p,

and where ǫ ∼ Nn(0, σ
2I). For a given regularisation parameter λ > 0, write down the

optimisation problem used to obtain the ridge regression estimator β̂R
λ of β. After having

replaced each Yi with Yi− Ȳ , where Ȳ = n−1
∑n

i=1 Yi, write down a closed-form expression

for β̂R
λ .

Assume for now that n > p and that rank(X) = p. Give a brief, intuitive
explanation of how the ridge regression estimator differs from the maximum likelihood
estimator β̂ = (XTX)−1XTY , and also explain why the ridge regression estimator might
be preferable when some of the columns of X are nearly collinear.

Without assuming that n > p or that rank(X) = p, show that

lim
λց0

β̂R
λ = (XTX)+XTY,

where (XTX)+ denotes the Moore–Penrose pseudoinverse of XTX.
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4 In the context of testing null hypotheses H1, . . . ,Hm, define the Familywise Error

Rate (FWER). Letting Pi denote the p-value corresponding to Hi, define the Bonferroni

correction for controlling the FWER at level α ∈ (0, 1). Assuming that the p-values
corresponding to true null hypotheses have a U(0, 1) distribution, prove that the procedure
does indeed control the FWER at level α.

Now denote the ordered p-values as P(1) 6 . . . 6 P(m), and let H(i) denote the
null hypothesis corresponding to P(i). Holm’s step-down procedure rejects H(1), . . . ,H(k),
where

k = max

{

i ∈ {1, . . . ,m} : P(1) 6
α

m
,P(2) 6

α

m− 1
, . . . , P(i) 6

α

m− i+ 1

}

.

Assuming again that the p-values corresponding to true null hypotheses have a U(0, 1)
distribution, prove that Holm’s step-down procedure controls the FWER at level α.

Now define the False Discovery Rate (FDR). Define the Benjamini–Hochberg (BH)
procedure for controlling the FDR at level α ∈ (0, 1). Under conditions that you should
specify, prove that the BH procedure does indeed control the FDR at level α.

END OF PAPER
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