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Write an essay on mathematical models of loss networks. Your essay should cover
the following topics, but need not be restricted to them.

(i) The stationary distribution for a loss network operating under fixed routing.

(ii) The Erlang fixed point approximation for a loss network, and its uniqueness when
routing is fixed.

(iii) An example of a loss network with alternative routing where the Erlang fixed point
approximation is not unique.
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Write an essay on mathematical models of traffic flow through networks. Your essay
should cover the following topics, but need not be restricted to them.

(a) The definition of a Wardrop equilibrium.

(b) The relationship between a Wardrop equilibrium and optimization formulations of
network flow.

(c) Braess’ paradox.
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Outline a mathematical model of a slotted infinite-population random access scheme,
where Nt is the number of stations with a packet to transmit and each such station inde-
pendently transmits its packets with probability 1/St. Interpret the equation

Nt+1 = Nt + Yt − I[Zt = 1]

where Zt = 0, 1 or ∗ according as 0, 1 or more than 1 packets are transmitted in slot
(t, t + 1) and Yt is the number of arrivals in slot (t, t + 1), assumed to have a Poisson
distribution with mean ν.

Suppose that St is updated by the recursion

St+1 = max{1, St + aI[Zt = 0] + bI[Zt = 1] + cI[Zt = ∗]}

for a triplet (a, b, c). Is (St, Nt) a Markov chain?

Motivate the differential equation

ds

dt
= (a− c)e−κ + (b− c)κe−κ + c

dn

dt
= ν − κe−κ

where κ = n/s in terms of the expected drift of (Nt, St).

Find conditions on (a, b, c) such that, provided ν < e−1, any trajectory solving the
differential equations converges to the origin. What happens if ν > e−1?
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Derive Chernoff’s bound

P{Y > 0} 6 inf
s>0

E[esY ] .

Let

X =

J
∑

j=1

nj
∑

i=1

Xji

where Xji are independent random variables with

αj(s) =
1

s
logE[esXji ] ,

for i = 1, 2, . . . , nj. Show that

J
∑

j=1

njαj(s) 6 C −
γ

s
⇒ P{X > C} 6 e−γ ,

and briefly discuss the interpretation of αj(s) as an effective bandwidth.

In the case where Xji ∼ N(λj, σ
2
j ), show that the above implication can be written

in the form

J
∑

j=1

njλj +



2γ
J
∑

j=1

njσ
2
j





1/2

6 C ⇒ P{X > C} 6 e−γ .

Under the same distributional assumptions on Xji, determine a necessary and
sufficient condition on n1, n2, . . . , nJ such that P{X > C} 6 e−γ , and show that it can be
written in the form

J
∑

j=1

njλj + φ





J
∑

j=1

njσ
2
j





1/2

6 C

for a constant φ to be determined.
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Let J be a set of resources, and R a set of routes, where a route r ∈ R identifies
a subset of J . Let Cj be the capacity of resource j, and suppose the number of flows in
progress on each route is given by the vector n = (nr, r ∈ R). Define a proportionally fair
rate allocation, (xr, r ∈ R).

Consider a linear network with resources J = {1, 2, . . . , I}, each of unit capacity,
and routes R = {0, 1, 2, . . . , I} where we use the symbol 0 to represent a route {1, 2, . . . , I}
which traverses the entire set of resources, and the symbol i to represent a route {i} through
a single resource, for i = 1, 2, . . . , I. Show that under a proportionally fair rate allocation

x0n0 + xini = 1 if ni > 0, i = 1, 2, . . . , I

and

x0 =
1

n0 +

I
∑

i=1

ni

if n0 > 0 .

Suppose now that flows describe the transfer of documents through the linear
network above, that new flows originate as independent Poisson processes of rates
νr, r ∈ R, and that document sizes are independent and exponentially distributed with
parameter µr for each route r ∈ R. Determine the transition intensities of the resulting
Markov process n = (nr, r ∈ R). Show that the stationary distribution of the Markov
process n = (nr, r ∈ R) take the form

π(n) = (1− ρ0)
1−I

I
∏

i=1

(1− ρ0 − ρi)

(
∑I

r=0
nr

n0

) I
∏

r=0

ρnr
r ,

provided ρ0 + ρi < 1, i = 1, 2, . . . , I where ρr = νr/µr.

Find E(ni), under the distribution π, for i = 1, 2, . . . , I.
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