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(a) Consider an FRW universe with a cosmological constant, spatial curvature and a
perfect fluid with density ρ and constant equation of state w ≡ P/ρ > 0. Use units
where 8πG = c = 1.

Show that the Friedmann equation can be written as the equation of motion of a
particle moving in one dimension with vanishing total energy and potential

V (a) = −ρ0
6

1

a(1+3w)
+

k

2
− Λ

6
a2 .

Sketch V (a) for the following cases: i) k = 0, Λ < 0, ii) k = ±1, Λ = 0, and iii)
k = 0, Λ > 0. Assuming that the universe “starts” with da/dt > 0 near a = 0,
describe the evolution in each case. Where applicable determine the maximal value
of the scale factor.

(b) From now on consider the case Λ = 0 and k = +1.

Show that the scale factor obeys the following differential equation

a′′ + a =
ρ0
6
(1 − 3w)a−3w ,

where the primes denotes derivatives with respect to conformal time τ . You may
assume that this equation has the following solution [do not try to show this! ]

a(τ) = A

[

sin

(

1 + 3w

2
τ +B

)]2/(1+3w)

,

where A and B are integration constants.

On physical grounds determine the constant A in terms of ρ0 and w.

Defining a(τ = 0) ≡ 0, give the solution for i) pressureless dust (w = 0) and ii)
radiation (w = 1

3 ). In each case, determine the time of the “big crunch”.

Consider a photon leaving the origin at τ = 0. For the case of pressureless dust, how
many times can the photon circle the universe before the universe “ends”? How far
does the photon get in the case of radiation?

[Hint: You may use that the metric for a closed FRW universe is

ds2 = a2(τ)
[

dτ2 − dχ2 − sin2 χ
(

dθ2 + sin2 θ dφ2
)]

. ]
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The early universe was filled with a gas of photons, electrons and protons. (You may ignore
other light nuclei such as helium.) Around 380,000 years after the Big Bang, electrons and
protons combined into neutral hydrogen atoms. The number density of massive particles
in thermal equilibrium at a temperature T ≪ mi is

ni = gi

(

miT

2π

)3/2

e−(mi−µi)/T ,

in units where ~ = c = kB ≡ 1, while the number density of photons is

nγ =
2ζ(3)

π2
T 3 , where ζ(3) ≈ 1.2 .

a) Derive the Saha equation for the fractional ionization Xe = ne/nb,

1−Xe

X2
e

=
2ζ(3)

π2
η

(

2πT

me

)3/2

eB/T = 3× 10−16 eB/T

(B/T )3/2
,

where η = nb/nγ ≈ 6 × 10−10 is the baryon-to-photon ratio, B = 13.6 eV is the
binding energy of hydrogen, and me = 511 keV is the electron mass.

b) Defining “recombination” as the moment when Xe(Trec) ≡ 1
2 , show that

Trec ∼
2

5
eV .

[Hint: You may use that ln
(

2
3 × 1016

)

≈ 36.]

Explain why Trec is much smaller than B.

c) Qualitatively discuss “photon decoupling” and “electron freeze-out”. Define the de-
coupling temperature Tdec. Sketch the expected Xe(T ) together with the prediction
of the Saha equation. Mark Trec and Tdec on the plot.
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The universe contains radiation (r), pressureless matter (m) and dark energy (Λ). Inside
the Hubble-radius, the matter fluctuations satisfy the following equations

δ̇m = −1

a
∇ · vm and v̇m = − ȧ

a
vm − 1

a
∇Φ ,

where δm and vm are the density contrast and peculiar velocity of the matter. Overdots
denote derivatives with respect to proper time t. The gravitational potential Φ is
determined by the Poisson equation

∇2Φ = 4πGa2ρ̄mδm .

(a) Show that
δ̈m + 2Hδ̇m − 4πGρ̄mδm = 0 ,

where H ≡ ȧ/a.

(b) At early times (a ≪ aeq), the universe is radiation dominated. Show that u ≡ δm/a
then satisfies

d2u

da2
+

3

a

du

da
+

1

a2

(

1− 3

2

a

aeq

)

u = 0 .

[Hint: You may use that during radiation domination ä = −ȧ2/a.]

Determine the growing and decaying modes of δm in the radiation-dominated era.
Justify any approximation you make.

(c) At late times (a ≫ aeq), the universe is a mixture of dark matter and dark energy.
The quantity u ≡ δm/H then satisfies [you don’t need to derive this! ]

d2u

da2
+ 3

d ln(aH)

da

du

da
= 0 .

Show that the decaying mode is δm ∝ H, while the growing mode is

δm ∝ H

∫ a

ai

dã

(ãH)3
,

where ai is the scale factor at some early time (but after aeq).

What are the growing and decaying modes of δm in the matter-dominated era?
What is the asymptotic limit (a → +∞) of the growing mode solution in the dark
energy-dominated era?
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Slow-roll inflation is described by the following scalar field action

S =

∫

d4x
√−g

[

1

2
gµν∂µφ∂νφ− V (φ)

]

,

where φ is the inflaton field and V (φ) is its potential. Throughout this question you may
ignore metric fluctuations and approximate the spacetime by the de Sitter line element,
i.e. ds2 = a2(τ)

[

dτ2 − dx2
]

, where a(τ) ≈ −(Hτ)−1, with 3M2
plH

2 ≈ V (φ) ≈ const.

(a) Expand the scalar field into a background value and small fluctuations, i.e. φ(τ,x) =
φ̄(τ) + f(τ,x)/a(τ). Derive the quadratic action for f and show that the equation

of motion for fk(τ) ≡
∫

d3x
(2π)3/2

e−ik·xf(τ,x) is

f̈k +

(

k2 − ä

a

)

fk = 0 ,

where the overdots denote derivatives with respect to conformal time τ .

[Hint: You may freely drop boundary terms arising from integrations by parts.

Moreover, you may assume that a2V ′′ ≪ (aH)2 = 1
2 ä/a.]

(b) Discuss qualitatively the quantisation of fk. In particular, write the associated
quantum operator as

f̂k(τ) = uk(τ)âk + u∗k(τ)â
†
−k

,

state the meaning of âk and â†
k
, cite the appropriate commutation relation and

define the vacuum state |0〉. Verify that the appropriate solution for the mode
function is given by

uk(τ) =
e−ikτ

√
2k

(

1− i

kτ

)

.

Why doesn’t this solution include a piece proportional to e+ikτ?

(c) Compute the zero-point fluctuations,

〈0|δφ̂†
k
δφ̂k

′ |0〉 ≡ |uk|2
a2

δ(k − k
′) ,

in the limit kτ → 0.

Briefly explain the relevance of this result for the primordial scalar and tensor
fluctuations in the inflationary universe.
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