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1

By consideration of the map φ : R3/R2 → C given by

φ(x, y, z) =
x+ iy

1− z
, z 6= 1

show that a two–dimensional sphere S2 admits an atlas with holomorphic transition
functions.

Let f : S2 → S2 be given by f(ζ) = ζk, where ζ ∈ C∪{∞}, and k is a non-negative
integer. Use the volume form

Ω =
idζ ∧ dζ̄

(1 + |ζ|2)2

on S2 to compute the topological degree of f . Compare your answer with the method of
pre-images.

2

Write an essay on the interplay between gauge theory, and the theory of connections
on SU(2) principal bundles.
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3

Let G be a two–dimensional Lie group acting on R by

g(α, β;x) = exp (α)x+ β,

where (α, β) ∈ R
2 are the parameters of the transformation, and x ∈ R.

• Consider vectors in R
2 of the form (x, 1) to show that the elements of G can be

represented by matrices

g =

(

exp(α) β
0 1

)

,

and use this representation to find the Lie algebra of G.

• Use the Maurer–Cartan one–form to find left and right invariant vector fields on G,
and show that they satisfy the Lie algebra relations.

• Consider the elements of G

g1 =

(

1 ǫ
0 1

)

, g2 =

(

exp(ǫ) 0
0 1

)

to show that left translations on G are generated by right-invariant vector fields.

4

Let (M,g) be an n–dimensional Riemannian manifold.

• Consider the canonical symplectic structure on T ∗M to show that the geodesics on
M are integral curves of a Hamiltonian vector field on T ∗M with the Hamiltonian

H =
1

2
gij(x)pipj, i, j = 1, . . . , n

where x ∈ M .

• Show that homogeneous quadratic polynomials of the form K = Kij(x)pipj Poisson
commute with H iff Kij = gikgjlK

kl is a Killing tensor on M .

• Let Y be a two–form on M such that

∇(iYj)k = 0,

where ∇ is the Levi–Civita connection of g. Show that Kij = YikYj
k is a Killing

tensor.
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