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1 Viscous instability
The equation of mass conservation in cylindrical polar coordinates (r, ϕ, z) is given by:

∂

∂t
(rρ) +

∂

∂r
(rρur) +

∂

∂ϕ
(rρΩ) +

∂

∂z
(rρuz) = 0, (1)

where ρ is the density and u = (ur, rΩ, uz) the velocity. Angular momentum conservation
is given by:

∂

∂t
(r3ρΩ) +

∂

∂r
(r3ρurΩ− r2Trϕ) +

∂

∂ϕ
(r3ρΩ2 − rTϕϕ) +

∂

∂z
(r3ρuzΩ− r2Tϕz) = 0, (2)

where Tij denote components of the stress tensor, the most important of which is
Trϕ = νρrdΩ/dr, with ν the kinematic viscosity. In this question we consider the viscous

instability, which may be relevant for some astrophysical discs.

(a) Show that equations (1) and (2) can be combined into a single diffusion equation for
the surface density Σ in a Keplerian disc:

∂Σ

∂t
=

3

r

∂

∂r

[

r1/2
∂

∂r

(

r1/2ν̄Σ
)

]

, (3)

where ν̄ is an appropriate average of the kinematic viscosity. Clearly state all
assumptions you make.

(b) Find the general steady solution to equation (3). Use this to construct specific
solutions for the cases of i) no viscous torque at the inner boundary rin, and ii)
no mass accretion onto the central object. Comment on what happens at the inner
boundary in both cases.

(c) By considering perturbations Σ1(r, t) around a given solution to equation (3), Σ0(r, t),
with |Σ1| ≪ Σ0, show that

∂Σ1

∂t
=

3

r

∂

∂r

[

r1/2
∂

∂r

(

r1/2qν̄0Σ1

)

]

, (4)

where it is assumed that ν̄ = ν̄(r,Σ) with q = ∂ ln(ν̄Σ)/∂ ln Σ and ν̄0 = ν̄(r,Σ0).

(d) Assume a viscosity law ν̄ ∝ raΣb, where a and b are constants. Derive a relation
between a, b and p for a steady solution with no mass accretion (and therefore a
constant viscous torque) found under part (b) with Σ0 ∝ r−p, with p a constant.
Show that, by a suitable change in variables, equation (4) can be transformed into the
diffusion equation

∂g

∂t
= A(x)

∂2g

∂x2
, (5)

and show that, for a specific choice of p, A is a constant. Adopting this value of p,
show that for q < 0, the disc is unstable (viscous instability), and that the instability
grows fastest at short wavelengths.
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2 Gravitational instability with softening
The basic equations for a two-dimensional compressible inviscid shearing sheet with self-
gravity read

∂Σ

∂t
+∇ · (Σu) = 0, (1)

∂u

∂t
+ u · ∇u+ 2Ω× u = 2ΩSxex −∇Φd −∇P/Σ, (2)

where Σ is the surface density, u the two-dimensional velocity, Ω = Ωez the rotation rate,
S the shear rate, Φd the potential due to self-gravity and P the two-dimensional pressure,
which we take to be a function of surface density only. The self-gravity potential can be
found from Poisson’s equation:

∇2Φd = 4πGρ = 4πGΣδ(z). (3)

One major drawback of taking such a razor-thin disc is that the effects of self-gravity
are exaggerated compared to a real disc with finite thickness. A possible solution is to
introduce a softening length ǫ > 0, which smooths the gravitational potential over a
distance ǫ.

(a) Given a density distribution ρ(x, y, z), an integral representation of Φd is given by

Φd = −G

∫∫∫

ρ(x′, y′, z′)dx′dy′dz′
√

(x− x′)2 + (y − y′)2 + (z − z′)2
.

Argue that, for the density distribution of a razor-thin disc, evaluating this potential
at z = ǫ amounts to smoothing the horizontal gravitational forces over a distance ǫ.
What would be an appropriate value for ǫ to represent a disc with finite thickness?

(b) Calculate the self-gravity potential from (3), and show that at z = ǫ its Fourier
transform is given by (for k 6= 0):

Φ̃d = −
2πGΣ̃

k
exp(−kǫ), (4)

where k =
√

k2x + k2y and Σ̃ is the Fourier transform (in x and y) of the surface density.

(c) Consider a basic state with Σ = Σ0 = cst, P = P0 = cst and u = u0 = −Sxey.
Consider axisymmetric perturbations ∝ exp(ikxx − iωt). Show that the dispersion
relation is given by

ω2 = κ2 − 2πGΣ0k exp(−kǫ) + k2c2s, (5)

where κ is the epicyclic frequency, and cs is the sound speed in the unperturbed disc.

(d) Introduce a dimensionless wavenumber s = Qcsk/κ, where the Toomre parameter
Q = κcs/(πGΣ0), and a dimensionless smoothing length δ = κǫ/(Qcs). Assuming
instability can occur for some values of s, write down a (non-algebraic) equation for
the most unstable wavenumber s∗, and show that

s∗ <
1

1 + δ
. (6)
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Derive an equation in terms of s∗ for the minimum value of Q, Qc, for which instability
can occur, and show that

Q2

c <
1 + 2δ

(1 + δ)2
6 1. (7)

Compare the results (6) and (7) to the unsoftened case (δ = 0) and interpret the
differences physically.
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3 Satellite migration
Consider the dynamics of test particles around a satellite in the xy plane in the infinite
shearing sheet. The equations of motion are given by

ẍ− 2Ωẏ = 2ΩSx−
∂Ψ

∂x
, (1)

ÿ + 2Ωẋ = −
∂Ψ

∂y
, (2)

where Ψ = −GMs(x
2 + y2)−1/2 is the satellite potential, Ω is the fixed angular velocity of

the satellite and S is the shear rate of the disc.

(a) Use the impulse approximation to show that the change in the velocity component
parallel to the orbital motion for a particle starting at x = x0 is given approximately
by

∆v‖ ≈
(GMs)

2

2S3x5
0

. (3)

[You may want to make use of the integral
∫∞
0

(1 + s2)−3/2ds = 1.]

(b) If a disc of test particles has surface density Σ(x), show that, assuming a minimum
impact parameter of H, and using (3), the torque on the disc for particles with x > 0
is given by

Γ>0 = r0
(GMs)

2

2S2

∫ ∞

H

Σ(x)dx

x4
, (4)

where r0 is the orbital radius of the satellite. Also show that when Σ is even around
x = 0, the total torque on the disc is zero.

(c) Now take a surface density Σ = Σ0(1+βx/r0), where β ≪ r0/H represents a measure
of the local surface density slope. Show that the total torque on a Keplerian disc is
given by

Γ =
2

9
β

q2

(H/r0)2
Σ0r

4

0Ω
2, (5)

where q = Ms/M∗ is the mass ratio of the satellite and the central object. Discuss
the flow of angular momentum in the system.

(d) Assuming that the satellite remains on a circular orbit, calculate its migration rate
dr0/dt due to disc torques.

END OF PAPER

Part III, Paper 54


