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Use the shape and evolution of the observed power spectrum of the spatial distribution

of matter in the late-time Universe (redshift z < 100) to explain what is meant with

hierarchical galaxy formation. Explain when and how this shape was established, and

how it relates to the shape of the power spectrum of spatial fluctuations of the energy

density in the Early Universe.

Explain the difference between warm and cold dark matter, and how this affects galaxy

formation.

Explain what happens, when density fluctuations in the Universe turn ”non-linear”, and

what is meant by the virial temperature of a dark matter halo.

Explain what happens to the baryons in a dark matter halo undergoing non-linear collapse,

if the gas

i) cannot cool below the virial temperature of the dark matter halo,

ii) can cool below the virial temperature of the dark matter halo.

Describe the most important cooling processes for gas at temperatures,

i) T < 104K,

ii) 104 < T < 106K,

iii) T > 106K.

Explain the current understanding of why the efficiency of turning baryons into stars

appears to peak in dark matter halos with a mass of ∼ 1012M⊙ and to decrease rapidly

for halos with larger and smaller mass.
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Assume the Universe to be Einstein-de-Sitter and matter dominated with Hubble constant

H(t) and background density ρ̄ = 3H2(t)/8πG. Consider a spherically symmetric density

perturbation with radius R and enclosed mass M. Show that the parametric solution

R = A (1− cos θ), t = B (θ − sin θ), (∗)

solves the equation of motion of the mass shell for suitable values of the constants A and

B. Sketch this solution for a suitable range of θ and express A and B in terms of the radius

and time at maximum expansion, Rmax = R(t = tmax).

By comparing to the evolution of a spherical homogeneous region of the Universe with the

same enclosed mass and density equal to the mean background density ρ̄ show that at the

time of maximum expansion the overdense region is denser by a factor ρ/ρ̄ = (3π/4)2.

Assume that the object formed during the collapse reaches virial equilibrium by the time

the solution (*) reaches R(t = tcoll) = 0. Calculate the ratio ρvirial/ρ̄(tcoll). Explain how

this can be used together with an estimate of mass and virial radius of a collapsed object

to estimate it’s redshift of formation.
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i) A supermassive black hole discovered at redshift z = 8 has been measured to have

a mass of 3 × 108M⊙. Assume that the black hole has grown by continuous spherical

accretion of gas at the Eddington accretion rate from an initial mass M0.

Starting from the balance between gravitational and radiative force on the accreting gas

show that the black hole mass will have grown as

Mbh = M0 exp[t/te−fold], with te−fold ≈ ǫr
c σT

4πGmp
≈ 4.5 ǫr 10

8yr,

where ǫr is the radiative efficiency of accretion, σT is the cross section for Thomson

scattering and mp is the proton mass.

Compare the time for growth from M0 = 30M⊙ to the observed mass at z = 8 with the

age of the Universe at that time. Assume ǫr = 0.1, and Ωmat = 0.25, Ωbar = 0.05 and

h = 0.7 for the present-day values of matter density, baryon density and Hubble constant

and comment on whether the black hole could have grown to its observed mass in that

way.

ii) Consider the innermost 3× 109M⊙ of baryons at the centre of a spherical dark matter

halo which has collapsed at z = 8 and has total mass 3× 1012M⊙ within the virial radius

rvir = 53kpc.

Estimate the radius rd and rotational velocity vd at which these baryons settle into angular

momentum support at the centre of the dark matter halo if the specific angular momentum

is conserved. Assume that the rotational velocity at the virial radius is 10 percent of the

virial velocity and that the distribution of the specific angular momentum of baryons

and dark matter are the same and can be described by the mass with specific angular

momentum less than j, as M(< j) = Mtot (j/jvir), where jvir is the specific angular

momentum at the virial radius. You can also assume that there is no dark matter at

r < rd. State and explain any additional assumptions you have made.

[You may find the following expression helpful: 3× 109 GM⊙ ≈ 1.3 × 104 (km/s)2 kpc]
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i) With the Press–Schechter ansatz, the mass fraction of the matter density in the Universe

in collapsed objects with mass greater than M at redshift z is,

f(> M, z) = erfc

(

δc(z)
√
2σ(M,z = 0)

)

with erfc(x) =
2
√
π

∫

∞

x
exp (−t2) dt.

Explain the meaning of δc(z) and σ(M,z = 0).

Assume the power spectrum describing the Gaussian density fluctuations can be approx-

imated as a power law P (k) ∝ kn. Using the Press–Schechter ansatz a differential mass

function of collapsed objects of the form

n(M,z) dM = AMα exp [−(M/M∗(z))
β] dM

can be derived, where M∗(z) is a characteristic mass that evolves with time/redshift.

Calculate A, α, β and σ(M∗).

ii) Assume that star formation in collapsed objects with mass larger than Mmin produces

3000 ionizing photons per ”collapsed baryon” and that the hydrogen in the Universe is fully

re-ionized once 3 ionizing photons for each baryon in the Universe have been produced.

The amplitude of density fluctuations with enclosed mass 64Mmin at redshift z = 3 has

been measured to be σ(M = 64Mmin, z = 3) = 0.5.

At which redshift has the hydrogen in the Universe become fully re-ionized? Assume that

the power spectrum slope is n = −2 on the relevant mass scale.

Assume that the objects with mass Mmin collapsing at z = zreion reach virial equilibrium

without disspating any energy and have a virial velocity of 9 km/s. Estimate the typical

comoving distance l̄ = [n(M)M ]−1/3 between such objects. Assume Ωmat = 0.25 and

h = 0.72 for the present day values of matter density and Hubble constant.

[You may find the following approximate values helpful: (4.642/π)−1/6 ≈ 0.75, and for the

inverse of the complementary error function, erfc−1(10−3) ≈ 2.33.]
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