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(a) Starting from the wave equation

(

∂2

∂t2
− c0

2∇2

)

(ρ− ρ0) = − ∂

∂xi

(

Fiδ(f)|∇f |
)

,

where f = f(x, t) and Fi = Fi(x, f), derive the solution in integral form

ρ(x, t)− ρ0 = − ∂

∂xi

∫∫
[

Fi(y)hphq
4πc02|x− y| |1−Mr|

]

τ=τ∗
dpdq (*)

where Mr and τ∗ should be specified, the surface f(y, τ) = 0 is given by y =
y(p, q, τ) with p and q orthogonal coordinates, and hp and hq are |∂y/∂p| and
|∂y/∂q| respectively. You may use, without proof, the identity

∫

R3

Aδ(f)|∇f |d3y =

∫∫

Ahphq dpdq.

(b) The interior of a rigid object moving with the fluid is given by f < 0, and hence
the sound generated by the object may be approximated by (*), with F being the
force exerted by the object on the fluid. Explain briefly why the other two terms of
the Ffowcs Williams–Hawkings equation may be neglected in this case, stating any
other assumptions needed. How does (*) simplify for a compact object heard in the
far field?

A wind turbine has two thin blades of length a that rotate slowly in the y, z-plane
with angular frequency Ω. The blades are horizontal (in the ey direction) at time t = 0. At
a distance r from the centre of rotation, the force each blade exerts on the fluid (integrated
over the blade cross-section) is F = (2Fr/a2)eφ + (2Dr/a2)ex, where eφ is the direction
of motion of the blade. An observer stands in the far field at x = R(cos θex + sin θey)
with R≫ c0/Ω.

(c) Why does the compact limit imply Ωa/c0 ≪ 1? What is |1 −Mr| in this limit?
What is the sound radiated from a single blade in the compact limit? What does
the compact limit result give for the total sound from both blades?

(d) In the limit Ωa/c0 ≪ 1, show that

Ωτ∗ = Ωτ∗0 +
Ωr

c0
sin θ cos(Ωτ∗0 ) +O

(

1/R, (Ωa/c0)
2
)

,

where τ∗0 = t−R/c0. What are the first two nonzero terms of F in this limit? What
are the first two nonzero terms of |1−Mr|−1? Using (*), calculate the first nonzero
term of the sound radiated from both blades to the far field. Explain briefly on
physical grounds the directivity and time-dependence of your solution.
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In the absence of sound, a stationary fluid of density ρ0, pressure p0 and sound speed
c0 occupies the region y > 0. The horizontal surface y = 0 reacts with an impedance
Z = P/V , where a pressure p = p0 + P exp{iωt − ikx} gives a surface velocity in the
+y-direction of −V exp{iωt − ikx}. Throughout this question, you may like to consider
Im(ω) < 0.

(a) An incoming plane wave of amplitude A and frequency ω propagates towards the
surface at an angle θ to the horizontal. Show that surface reflects a plane wave of
amplitude R given by

A+R

A−R
=
Z sin θ

ρ0c0
.

Comment briefly on the cases (i) Z → 0, (ii) Z → ∞, (iii) R/A → 0, and (iv)
R/A → ∞, giving a physical description of both the behaviour of the surface and
the behaviour of the reflected wave in each case.

(b) Suppose the surface at y = 0 consists of a thin elastic sheet of mass-per-unit-area m
stretched along y = 0 with tension T , with a stationary fluid of density ρ0, pressure
p0 and sound speed c0 occupying y < 0. For small displacements, the displacement
η of the sheet in the y-direction is governed by

m
∂2η

∂t2
= T

∂2η

∂x2
− p+ + p−, (†)

where p+ and p− are the pressures in the fluids just above and just below the sheet
respectively. What impedance Z(k, ω) does the fluid in y > 0 see? How do the
limits (i) m → ∞, (ii) T → ∞ and (iii) m = T = 0 correspond to your physical
answers to part (a)? [Hint: T → ∞ is nearly, but not quite, the same as m→ ∞.]

(c) In the absence of incoming sound in the fluids, what is the dispersion relation
D(k, ω) for waves propagating along the elastic sheet (†)? For values of k and ω
satisfying D(k, ω) = 0, what is the value of Z(k, ω) calculated in part (b)? In light
of this, how should one interpret the limit R/A→ ∞ in part (a)?

(d) Now suppose sound is generated by an oscillating point force acting on the elastic
sheet, so that (†) becomes

m
∂2η

∂t2
= T

∂2η

∂x2
− p+ + p− + Fδ(x)eiωt.

By Fourier transforming in x, show that the sound generated by this forcing in the
far field for y > 0 is, provided no poles contribute,

ρ− ρ0 ∼ −
√

ω

2πr

Fρ0 exp{iω(t− r/c0) + iπ/4} sin θ
(

cos2θ −mc02/T
)

iωT sin θ − 2ρ0c0
.

Explain briefly, without further calculation (but possibly using a sketch), how you
would decide when the poles contribute. What do these poles represent physically?

[Hint: You may assume without proof that as r → ∞
∫

CSD

f(k)e−r(ik cos θ+γ sin θ) dk ∼
√

2πk0/rf(ks)e
iπ/4−ik0r sin θ,
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where CSD is the steepest descent contour, k0 = ω/c0, γ
2 = k2 − k0

2, and the
dominant contribution comes from the neighbourhood of ks = k0 cos θ.]
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Burgers’ equation is
∂f

∂z
− f

∂f

∂θ
= ε

∂2f

∂θ2
.

The inviscid Burgers’ equation is obtained by setting ε = 0.

(a) Show that the inviscid Burgers’ equation with initial conditions f(0, θ) = f0(θ) has
solution f

(

z, θ0−f0(θ0)z
)

= f0(θ0). Show also that if there is a weak shock at θs(z)
then

dθs
dz

= −1
2 lim
δ→0

(

f(z, θs + δ) + f(z, θs − δ)
)

.

Solve the inviscid Burgers’ equation for the initial conditions

f(0, θ) =

{

0 θ < 0
U θ > 0 ,

(+)

being careful to distinguish between U < 0 and U > 0.

[Hint: it may help to sketch the characteristics first. For U < 0, think of f(0, θ) as
being continuous but very steep at θ = 0.]

(b) For ε 6= 0, show that the Cole–Hopf transformation

f = 2ε
∂

∂θ
logψ

can be used to solve Burgers’ equation when ψ satisfies a diffusion equation. Given
that the general solution to the diffusion equation is

ψ(z, θ) =
1√
4πεz

∫

∞

−∞

ψ(0, φ) exp

{

−(φ− θ)2

4εz

}

dφ,

show that the solution to the full Burgers’ equation for the initial conditions given
in (+) is

f(z, θ) =
U

1 + α exp
{

− U(2θ + Uz)/4ε
} ,

where

α =

∫

∞

θ
exp

{

− y2/4εz
}

dy
∫

∞

−(θ+Uz)
exp

{

− y2/4εz
}

dy

.

Being careful about the sign of U , what happens (i) as θ → ∞, (ii) as θ → −∞, and
(iii) when α = 1? How does this compare with your inviscid solution found in (a)?

[

Hint: erfc(x) =
2√
π

∫

∞

x
e−t2 dt ∼ e−x2

x
√
π

as x→ +∞.

]
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