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(A): State the Szemeredi–Trotter theorem for points and unit circles.

(B): Prove that ∆(P ) & |P | 23 for a set P of points in the plane, where

∆(P ) = {|p − q| : p, q ∈ P}.

[You may cite part (A) if you wish.]

(C): Suppose P is a set of N points in the plane. Suppose L is a collection of N2 algebraic
curves of degree 6

√
N such that for any p, q ∈ P , p 6= q,

|{γ ∈ L : p ∈ γ and q ∈ γ}| 6
√
N.

Prove that I(P,L) . N
5

2 , where

I(P,L) = |{(p, γ) ∈ P × L : p ∈ γ}|.

2

(A) Let P ⊆ R3 with |P | = 12. Write Vd(P ) to denote the vector space of polynomials
f in R[x, y, z] of degree less than or equal to d such that f(p) = 0 for all p ∈ P . Show
dim(V4(P )) > 5.

(B) Let L be a collection of lines in R3. Prove there exists a nontrivial polynomial of

degree less than C|L| 12 that vanishes on every line of L. [Here C is a universal constant.]

3

Suppose a set P of n points in the plane spans fewer than 5n ordinary lines. Sketch
a proof that P is contained in the union of C cubic curves, where C is a universal constant.
[You may work in projective space if you prefer.]

END OF PAPER

Part III, Paper 10


