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1

Compute the cohomology groups of the infinite-dimensional real projective space
RP

∞. [The ring structure in cohomology is not required.]

For any topological space X, construct a homomorphism

β : Hn(X;Zm) → Hn+1(X;Zm)

which fits into a long exact sequence

· · · → Hn(X;Zm) → Hn(X;Zm2) → Hn(X;Zm)
β

−→ Hn+1(X;Zm) → · · ·

Show that β : Hn(RP∞;Z2) → Hn+1(RP∞;Z2) is an isomorphism for n odd and is
zero for n even.

2

LetX be a topological space. Define the cohomology with compact supportsH∗

ct(X).
Compute H∗

ct(R), where R has the Euclidean topology.

The one-point compactification of X is the set X+ = X ∪ {∞} comprising X and a
disjoint point {∞}, with a basis of open sets given by (i) the open sets in X and (ii) the
unions (X\K) ∪ {∞}, with K ⊂ X compact. Prove that if X+ is Hausdorff and locally
contractible at ∞, i.e. admits a basis of contractible open neighbourhoods of ∞, then

H∗

ct(X) ∼= H̃∗(X+) (1)

Now let X = Z×R ⊂ R
2 with the Euclidean topology. Does (1) hold for X? Justify

your answer.

3

Define the tautological complex line bundle over CP
n, and prove that it is locally

trivial. Hence, compute H∗(CPn;Z) as a ring.

Let n > 1. Show that there is no continuous function f : (S2)n → S2 satisfying

1. f is invariant under permutations of the factors;

2. f(x, . . . , x) = x for every x ∈ S2.
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4

State the Poincaré duality theorem.

Let X be a closed connected orientable six-dimensional manifold. Prove that the
Euler characteristic χ(X) is even. For each k ∈ 2Z, construct a closed orientable six-
manifold Xk with χ(Xk) = k.

If X is a closed six-manifold which is not orientable, need χ(X) be even? Justify
your answer.

5

Let E → X be a complex vector bundle of (complex) rank k over a compact space
X. Let π : P(E) → X denote the associated projective bundle, with fibre CP

k−1. Show
that the map

H∗(X)⊕ · · · ⊕H∗(X) −→ H∗(P(E)), (u0, . . . , uk−1) 7→
∑

π∗(ui)t
i

is an isomorphism, so H∗(P(E)) is the free H∗(X)-module with basis {1, t, t2, . . . , tk−1},
where t is the Euler class of a line bundle L on P(E) which you should define. [Hint:
Imitate the proof of the Thom isomorphism theorem.]

Deduce that H∗(P(E)) ∼= H∗(X)[t]/I, where I = (f(t)) is the ideal generated by a
monic polynomial

f(t) = tk − c1(E)tk−1 + c2(E)tk−2 + · · ·+ (−1)kck(E)

for uniquely defined classes ci(E) ∈ H2i(X).

Finally, suppose E ∼= ⊕k
i=1Li is a direct sum of complex line bundles. By considering

suitable sections si : X → P(E), for 1 6 i 6 k, prove that

f(t) =

k∏

i=1

(t− ei) ∈ H∗(X)[t]

where ei is the Euler class of Li.

END OF PAPER

Part III, Paper 12


