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(a) Define the Dolbeault cohomology groupsHp,q

∂̄
(X) of a complex manifold X. Also define

what it means for the sequence

0 → F → E → G → 0

of sheaves of abelian groups on X to be exact. Write down the associated long exact
sequence of Čech cohomology groups.

(b) State and prove Dolbeault’s Theorem.

(c) Using this, compute H
p,q

∂̄
(P1 × C) for all p ∈ {0, 2} and all q.

[General properties of Cech cohomology may be used without proof if stated clearly and
you may assume that Hp,q

∂̄
(Cr × (C∗)s) = 0 for all p, r, s > 0 and all q > 1.]
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(a) Define what it means for E to be a holomorphic vector bundle on a complex manifold
X. Define the Picard group Pic(X) and write down the Picard group of P1.

(b) Let π : E → X be a holomorphic vector bundle of rank 2 on X. Show that

P(E) = {l : l is a one dimensional complex subspace of π−1(x)

for some x ∈ X}

can be made into a complex manifold such that there is a holomorphic map p : P(E) →
X with the property that

p−1(x) ∼= P
1 (1)

for all x ∈ X. Define, without proof, a holomorphic line bundle L on P(E) with the
property that

L|p−1(x)
∼= OP1(1)

under the isomorphism in (1).

(c) Finally, prove the map
Pic(X)× Z → Pic(P(E))

given by
(M,n) → p∗M ⊗ L⊗n,

where L is the line bundle above, is well-defined and injective.
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Suppose X is a compact complex manifold and ω is a Kähler metric on X. Define
the Lefschetz operator L, the associated operator Λ, the operator ∂̄∗ and the Laplacian
∆∂̄ . Prove that a form α satisfies ∆∂̄α = 0 if and only if ∂̄α = 0 and ∂̄∗α = 0.

Assuming the identity [∂̄∗, L] = i∂ show

[L,∆∂̄ ] = 0

and prove that L induces a map

φω,k : Hp,q

∂̄
(X) → H

p+k,q+k

∂̄
(X)

for all k > 1. Now suppose that f is a smooth function on X such that

ω′ = ω + i∂∂̄f

is also a Kähler-form. Show that φω,k = φω′,k for all k.
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Let X be a complex manifold and g be a Riemannian metric on the underlying
smooth manifold. Define what it means for g to be compatible with the complex structure,
and define the associated fundamental form ω to g. Define what it means for g to be
Kähler, and explain why any Riemannian metric on a complex manifold of dimension 1
that is compatible with the complex structure is Kähler.

Now let g be a Riemannian metric on a complex manifold X of dimension n

compatible with the complex structure and ω be the associated fundamental form. Prove
that the following are equivalent:

(a) dω = 0.

(b) For any point x ∈ X there exist holomorphic coordinates z1, . . . , zn centred at x such
that locally

ω =
i

2

n∑

i,j=1

hijdzi ∧ dzj

where hij = δij +O(|z|2).

(c) For any point x ∈ X there exists an open x ∈ U ⊂ X and a smooth real function f

defined on U such that
ω|U = i∂∂̄f.

Now let X = C and suppose that
ω = i∂∂̄f

for some smooth function f with the property that

f(eiθz) = f(z) for all θ ∈ [0, 2π].

By considering the Taylor series expansion of f in z and z, or otherwise, show that the
formula

u(t) = f(z) where t = ln |z|2

gives a well-defined smooth function u : R → R, and that ω is the associated form of a
Kähler metric if and only if u′′(t) > 0 for all t ∈ R and limt→−∞ u′′(t)e−t > 0.
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Let π : E → X be a holomorphic vector bundle on a complex manifold X. Define
what it means for h to be a hermitian metric on E, what it means for D to be a connection
on E and what it means for D to be compatible with h. Prove that if D is compatible
with h then there exists a local frame s1, . . . , sr for E such that the connection matrix of
D is skew-hermitian.

Show that there exists a naturally defined holomorphic vector bundle E∗ → X

whose fibre over any x ∈ X is the dual space (Ex)
∗. Using this, explain how h can be

thought of as a smooth section H of (E ⊗ E)∗ where E is a complex vector bundle that
should also be defined.

Finally, show that D induces a connection D0 on (E ⊗ E)∗, and prove that D is
compatible with h if and only if

D0(H) = 0.
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