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SECTION A

1

(i) Show that if G is a comonad on a topos E , whose functor part preserves finite
limits, then the category of G-coalgebras is a topos.

(ii) Recall that an object A of a topos is called decidable if the diagonal A ֌ A×A

is a complemented subobject. Verify that decidability is inherited by arbitrary subobjects
and coproducts, and by finite products.

(iii) Let E be a Grothendieck topos, and let Eqd denote the full subcategory of
quotients of decidable objects in E (i.e. those B for which there exists an epimorphism
A ։ B with A decidable). Show that Eqd is a topos.

2

Explain what is meant by a local operator on a topos E , and by a sheaf for a local
operator. Sketch the proof that if j is a local operator on E then the category shj(E) of
j-sheaves is a topos, and that it is reflective in E .

Define the open and closed local operators o(U), c(U) associated with a subterminal
object U ֌ 1 in E . Show that the c(U)-closed monomorphisms coincide with the o(U)-
dense ones, and deduce that o(U) and c(U) are complementary elements of the lattice
Lop(E) of local operators on E . [Hint: Which monomorphisms are both o(U)-dense and

c(U)-dense? And which can be written as a composite of c(U)-dense and o(U)-dense
monomorphisms?]

3

Explain what is meant by a coherent theory over a first-order signature Σ. List
the axioms and rules of inference of coherent logic. Define the syntactic category CT of
a coherent theory T, and sketch the proof that it is a coherent category and contains a
conservative model of T. [Detailed verifications of derivability in T are not required.]
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SECTION B

4

(i) Explain briefly how a functor F : C → D between small categories induces a
geometric morphism [Cop,Set] → [Dop,Set].

(ii) An object A of a cocomplete category is called an indecomposable projective if,
whenever we have an epimorphism

∐
i∈I Bi ։ A, there exists i such that Bi → A is split

epic. Show that representable functors are indecomposable projectives in [Cop,Set], and
that the converse holds if idempotents split in C.

(iii) Let C and D be small categories such that idempotents split in D, and let
f : [Cop,Set] → [Dop,Set] be a geometric morphism such that f∗ has a left adjoint f!, as
well as its right adjoint f∗. Show that f is induced as in (i) by a functor C → D. [Hint:
Consider the restriction of f! to representables.]

(iv) A topos E admitting a geometric morphism to Set is said to be local if the direct
image functor E → Set is also an inverse image functor. Under what conditions on C is
[Cop,Set] local? [You may assume that idempotents split in C; recall that Set ∼= [1,Set]
where 1 is the terminal category.]

5

Let C be a small category. Give, with justification, a necessary and sufficient
condition on C for the assignment

J(U) = {all nonempty sieves on U}

to define a Grothendieck coverage on C. Show that this condition fails if C is the category
of nonempty finite sets and all functions between them, but that it holds for the category
D of nonempty finite sets and surjections. Show also that every representable functor
Dop → Set is a sheaf for this coverage. [Hint: Every morphism of D is regular epic.]

Now let F be any J-sheaf on D. We define an element x ∈ F (n) to be primitive if it
is not in the image of F (α) for any surjection α : n → (n− 1). [In particular, all elements
of F (1) are primitive.] Suppose that we have primitive elements x ∈ F (m), y ∈ F (n) and
surjections α : P → m, β : p → n such that F (α)(x) = F (β)(y); show that two elements
of p have the same image under α iff they do so under β, and deduce that there is a
bijection γ : m → n with F (γ)(y) = x. [Primitive elements related in this way are said to
be equivalent.]

By considering the subfunctors of F generated by (equivalence classes of) primitive
elements, show that F may be written as a coproduct of sheaves which are epimorphic
images of representables. Deduce that the subobject classifier of Sh(D, J) is the constant
functor with value {⊥,⊤}.
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6

(i) Let T be a (finitary) algebraic theory. Explain, without detailed proof, what
is meant by the statement that the functor category [Tfp,Set] is a classifying topos for
T-models in Grothendieck toposes, where Tfp may be viewed either as the category of
finitely-presented T-models in Set, or as an appropriate full subcategory of the opposite
of the syntactic category of T. What is the generic T-model in this topos?

(ii) The theory of integral domains is obtained from the theory of (commutative,
unitary) rings by adding the axioms ((0 = 1) ⊢ ⊥) and

((xy = 0) ⊢x,y ((x = 0) ∨ (y = 0))) .

Explain how a classifying topos for integral domains may be obtained by imposing a
suitable Grothendieck coverage on the opposite of the category of finitely-presented rings.
Is this coverage standard? [You need not identify all the covers explicitly.]

(iii) Show that the generic integral domain satisfies the non-coherent sequent

(¬(

n∧

i=1

(∃yi)(xiyi = 1)) ⊢x1,...,xn

n∨

i=1

(xi = 0))

for all n > 1. Show also that a nontrivial ring (in any topos) satisfying the case n = 2 of
this sequent is an integral domain.

END OF PAPER
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