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a) Briefly explain the construction of the Riemann surface X(Γ(1)) as a quotient of
the extended upper half-plane H

∐

P1(Q). Describe the points where the map
H → X(Γ(1)) is ramified and the ramification index at these points. Prove that
X(Γ(1)) is compact.

Let ∆ be the unique normalised cusp form in S12(Γ(1)) and let E4 be the normalised
weight 4 Eisenstein series

E4 = 1 + 240
∑

n>1

σ3(n)q
n.

b) Show that the function j(τ) = E4(τ)3

∆(τ) induces a biholomorphism from X(Γ(1)) to

P1
C, and that j(τ) has a zero at ω = −1+

√
3i

2 . [You may assume that ∆(τ) is non-

vanishing on H and has q-expansion q + · · · .]

c) Show that the function j2(τ) =
∆(τ)
∆(2τ) induces a biholomorphism from X(Γ0(2)) to

P1
C.

d) Show that

j(τ) =
(j2(τ)− j2(ω))

3

j2(τ)2
.

Part III, Paper 23



3

2

For τ ∈ H and q = e2πiτ the Jacobi θ-function is defined by

θ(τ) =
∑

n∈Z
qn

2

.

Define another function φ on H by

φ(τ) = θ

(

τ −
1

2

)

=
∑

n∈Z
(−1)nqn

2

.

a) Show that, for τ ∈ H,

θ

(

−1

4τ

)

=

√

2τ

i
θ(τ).

Hence (or otherwise) show that, for positive integers k, φ8k is an element of
M4k(Γ0(2)).

[You may quote the Poisson summation formula without proof, and assume that

Γ0(2) is generated by the matrices

±

(

1 1
0 1

)

,±

(

1 0
2 1

)

.]

b) Show that S4(Γ0(2)) = {0} and dimM4(Γ0(2)) = 2.

[Hint: for f in S4(Γ0(2)) consider the product

∏

α∈Γ0(2)\SL2(Z)

f |α,4.]

c) Show that

φ8 =
∑

n>0

(−1)nr8(n)q
n

where the integers r8(n) satisfy

r8(n) = (−1)n16
∑

0<d|n
(−1)dd3.

[It may be helpful to recall that the normalised weight 4 Eisenstein series has q-
expansion

E4 = 1 + 240
∑

n>1

σ3(n)q
n.]
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a) Let Γ be a congruence subgroup. Show that the genus of the modular curve X(Γ)
is given by

1 +
d

12
−

r2
4

−
r3
3

−
r∞
2

where d is the index of the image Γ of Γ in PSL2(Z), r∞ is the number of cusps
of X(Γ) and, for i = 2, 3, ri is the number of Γ-equivalence classes of points in H
whose stabiliser in Γ has order i.

Now let p be a prime number with p > 5.

b) Show that the modular curve X(Γ1(p)) has genus

(p− 5)(p − 7)

24
.

c) Suppose k is a positive integer and f is a non-zero meromorphic form of weight k
and level Γ1(p). Write down a divisor D(f) on X(Γ1(p)) such that

Sk(Γ1(p)) = {fφ : φ ∈ L(D(f))},

justifying this equality.

Assuming the existence of such an f , show that for k > 3

dimSk(Γ1(p)) =
(p − 1)

24
((p + 1)(k − 1)− 12).

[You may assume any general results about Riemann surfaces without proof, so long

as they are clearly stated.]
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Let N be a positive integer and χ a homomorphism

χ : (Z/NZ)× → C×.

Denote by LN the set of pairs (L, t) where L ⊂ C is a lattice and t is an element of C/L
of order N .

a) Explain how to associate a function on the set LN to an element of Mk(Γ1(N)).

b) For p prime and d ∈ (Z/NZ)×, define the Hecke operators Tp and 〈d〉 on the space of
functions on LN . Show that these operators preserve the space of functions arising
from elements of Mk(Γ1(N)).

Denote by Mk(N,χ) the subspace of Mk(Γ1(N)) consisting of f satisfying 〈d〉f = χ(d)f
for all d ∈ (Z/NZ)×.

c) Suppose f =
∑

n>0 anq
n ∈ Mk(N,χ). Show that the q-expansion of Tpf is given by

Tpf =
∑

n>0

bnq
n

where bn = apn if p ∤ n and bn = apn + χ(p)pk−1an/p if p | n.

d) Suppose f ∈ Mk(N,χ) with Tp(f) = λf for some prime p with p ∤ N . Moreover,
suppose that the polynomial X2 − λX + χ(p)pk−1 has two distinct roots α and β.
Denote by χ̃ the homomorphism

χ̃ : (Z/NpZ)× → C×

given by composing χ with the reduction mod N map from (Z/NpZ)× to (Z/NZ)×.

Show that the functions f(τ) and f(pτ) span a two-dimensional subspace of
Mk(Np, χ̃) on which Tp acts with eigenvalues α and β.

[You may assume without proof that f(pτ) is holomorphic at the cusps.]
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Suppose k and N are positive integers and let

f =
∑

n>1

anq
n ∈ Sk(Γ1(N)).

Consider the L-function
L(f, s) =

∑

n>1

an
ns

.

a) Show that this series defines a holomorphic function for Re(s) > k/2 + 1.

Set Λ(f, s) = N s/2(2π)−sΓ(s)L(f, s) and g(τ) = ikN−k/2τ−kf(−1/Nτ).

b) Show that Λ(f, s) extends to a holomorphic function for all s ∈ C and Λ(f, s) =
Λ(g, k − s).

c) Consider the function defined by f(τ) = q
∏

n>1(1− qn)2(1− q11n)2, which you may
assume is an element of the one-dimensional space S2(Γ0(11)). Show that

−
1

11
τ−2f(−1/11τ) = f(τ).

Deduce that the order of vanishing of Λ(f, s) at s = 1 is even.

END OF PAPER
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