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1

What is an absolute value on a field K? What does it mean to say that an
absolute value is nonarchimedean? What does it mean to say that two absolute values
are equivalent? Show that there is a bijection between the set of equivalence classes of
nonarchimedean absolute values on K and the set of equivalence classes of valuations on
K.

Show that any nonarchimedean absolute value of Q is equivalent to some p-adic
absolute value.

Let K be complete with respect to a nonarchimedean absolute value. What is the
valuation ring R of K? Show that R is compact (with respect to the valuation topology)
if and only if (i) K is discretely valued, and (ii) the residue field of K is finite.

2

Let L/K be a finite separable extension of fields complete with respect to a discrete
valuation. Define the inverse different of L/K, and show that it is the inverse of an ideal
DL/K of oL.

Suppose that oL = oK [x], and that g is the minimal polynomial of x over K. Show
that DL/K = g′(x)oL. Deduce that if L/K is totally ramified of degree n with residue

characteristic p, where (p, n) = 1, then DL/K = πn−1

L oL.

Compute, for any positive integer r, the different of the extension Kr = Qp(ζpr)/Qp,
where ζpr is a primitive pr-th root of unity.

[You may assume without proof that for a finite separable extension of fields, the
trace form is non-degenerate.]

3

Let p be an odd prime and K = Qp(ζp), πK = 1− ζp.

(i) Show that if 1 6 i 6 p − 1 then (1 − ζ ip)/(1 − ζp) ≡ i (mod πK). Deduce that
(1− ζp)

p−1 = −pu for some u ∈ 1 + πKoK .

(ii) Use Hensel’s Lemma to show that for every u ∈ 1 + πKoK there exists v ∈ o∗K
with vp−1 = u, and deduce that K = Qp( p−1

√−p).

(iii) Let L = Qp( p(p−1)
√−p). Deduce that L/Qp is the splitting field of Xp− p. Find

the ramification groups of L/Qp.
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Define the group of ideles JK of a number field K. What is the topology on JK?
Show that K∗ is a discrete subgroup of JK . Let

UK =
∏

v infinite

K∗

v ×
∏

v finite

O
∗

v.

Show that JK/K∗UK is isomorphic to the class group of K.

Assuming the compactness of J1

K/K∗, show that the class group of K is finite, and
give an outline proof of Dirichlet’s Unit Theorem.

5

Let F/Qp be a finite extension, with valuation ring oF and uniformiser πF . What is
the Schwartz space S(F )? For f ∈ S(F ), explain carefully what is meant by the Fourier
transform of f .

Let a ∈ F and n ∈ Z. Compute the Fourier transform of the characteristic function
of a+πn

F oF . Deduce that for every f ∈ S(F ), its Fourier transform f̂ also belongs to S(F ),

and that (for appropriate choices of Haar measure and additive character)
̂̂
f(x) = f(−x).
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