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(a) Define ζ(s) for ℜ(s) > 1.

Show that if ℜ(s) > 1 and x > 0 then

ζ(s) =
∑

n6x

1

ns
+

x1−s

s− 1
+

{x}

xs
− s

∫ ∞

x
{w}

dw

ws+1
,

where {w} := w − ⌊w⌋ denotes the fractional part of w.

Deduce that ζ(s) has a meromorphic continuation to ℜ(s) > 0, with only a simple
pole at s = 1.

(b) Prove Van der Corput’s Lemma, which states that if f(x) is a real-valued
function on an interval [a, b] ⊆ R, and f ′(x) is continuous and monotonic on [a, b], and
|f ′(x)| 6 δ for some δ < 1, then

∑

a<n6b

e2πif(n) =

∫ b

a
e2πif(x)dx+O

(

1

1− δ

)

.

[You may assume basic facts from Fourier analysis and you may assume Abel’s
summation lemma, provided you state them clearly.]

Describe briefly how one can use Van der Corput’s Lemma to prove the Hardy–
Littlewood approximation for the zeta function, which states that if s = σ + it for some
σ > 0 and t ∈ R, and if x > |t|/π, then

ζ(s) =
∑

n6x

1

ns
+

x1−s

s− 1
+O(x−σ).

List a few uses of the Hardy–Littlewood approximation.
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(a) State and prove the Euler product expression for ζ(s) when ℜ(s) > 1.

Prove that if t ∈ R and σ > 1− c
log9(|t|+2)

then

∣

∣

∣

∣

1

ζ(σ + it)

∣

∣

∣

∣

= O
(

log7(|t|+ 2)
)

.

[You may assume any standard upper bounds for |ζ(s)| and |ζ ′(s)|, provided you
state them clearly.]

(b) State von Mangoldt’s explicit formula for Ψ(x). Explain briefly why the
contribution from zeros ρ of ζ(s) with ℜ(ρ) 6 0 or ℜ(ρ) > 1 may be ignored in the
explicit formula. Also state carefully an upper bound for the number of zeros ρ of ζ(s)
satisfying

0 < ℜ(ρ) < 1 and t 6 ℑ(ρ) 6 t+ 1,

where t ∈ R.

(c) Using parts (a) and (b), or otherwise, prove that if T 6 x are large then

Ψ(x) = x+O
(

x1−c/ log9 T log2 x
)

+O

(

x log2 x

T

)

.

Deduce the best upper bound you can for |Ψ(x)− x|.

Show that if all the zeros ρ of ζ(s) satisfying 0 < ℜ(ρ) < 1 actually satisfy
ℜ(ρ) = 1/2, then

Ψ(x) = x+O
(

x1/2 log2 x
)

.
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Throughout this question you may assume the Euler product expression for the zeta
function.

(a) Prove that if ℜ(s) > 1 then

−
ζ ′(s)

ζ(s)
=

∞
∑

n=1

Λ(n)

ns
.

Hence prove that if σ > 1 and t ∈ R then

−3
ζ ′(σ)

ζ(σ)
− 4ℜ

ζ ′(σ + it)

ζ(σ + it)
−ℜ

ζ ′(σ + 2it)

ζ(σ + 2it)
> 0.

(b) State and prove Landau’s theorem, which converts upper bounds on |ζ(s)| into
zero-free regions.

[Provided you state it clearly, you may assume a result that gives a lower bound for

ℜ f ′(z0)
f(z0)

when f is a holomorphic function on a disc |z − z0| 6 r, and f is non-zero in the

right half of the disc.]

(c) Suppose that for all large t and all 0 < σ 6 1 we have the Richert bound

ζ(σ + it) ≪ tC(1−σ)3/2 log2/3 t,

and that for all large t and σ > 1 we have the bound

ζ(σ + it) ≪ log2/3 t.

Carefully deduce the Vinogradov–Korobov zero-free region for ζ(s).

[You may assume standard facts about the zeta function provided you state them
clearly, but you may NOT assume any zero-free region results unless you deduce them
from part (b) or prove them from scratch.]
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(a) Prove that if N is large, and 1 6 M 6 N 6 t, and r := ⌊5.01 log tlogN ⌋, then

∑

N<n6N+M

n−it = O

(

M max
N6n62N

|U(n)|

N4/5
+N4/5 +Mt−1/500

)

,

where

U(n) :=
∑

x6N2/5

∑

y6N2/5

e(α1xy + α2x
2y2 + ...+ αrx

ryr), αj :=
(−1)jt

2πjnj
,

and e(z) := e2πiz.

(b) Define Vinogradov’s Mean Value Jk,r(Z). Prove that if Z is large then

Jk,r(Z) > c(k, r)max{Zk, Z2k−(1/2)r(r+1)},

for a suitable constant c(k, r) > 0 that may depend on k and r (but not on Z).

Explain briefly how one can obtain upper bounds for |U(n)| if one has good upper
bounds for Jk,r(N

2/5).

(c) Suppose we knew that for any 1 6 M 6 N 6 t,

∣

∣

∣

∣

∣

∣

∑

N<n6N+M

n−it

∣

∣

∣

∣

∣

∣

≪ Me−c(log2 N)/ log(t+2) +N4/5.

Deduce that for any large t, and any 0 < σ 6 1, we would have the bound

ζ(σ + it) ≪ tC(1−σ)2 log1/2 t.

[You may assume the Hardy–Littlewood approximation for the zeta function and you
may assume Abel’s summation lemma, provided you state them clearly.]
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(a) State and prove the truncated Perron formula, which relates
∑

n6x an with an
integral of the Dirichlet series

∑∞
n=1

an
ns .

[You do NOT need to give full details of all the cases of the contour integration
argument, but should explain briefly which contours are used and how the integrals are
bounded.]

Deduce that for any large T 6 x we have

Ψ(x) =
1

2πi

∫ 1+1/ log x+iT

1+1/ log x−iT

(

−
ζ ′(s)

ζ(s)

)

xs
ds

s
+O

(

x log2 x

T

)

.

[You may assume that −ζ ′(s)/ζ(s) =
∑∞

n=1Λ(n)/n
s when ℜ(s) > 1.]

Deduce further that if 1 6 y 6 x then

Ψ(x+ y)−Ψ(x) = O

(

y

∫ T

−T

∣

∣

∣

∣

ζ ′(1 + 1/ log x+ it)

ζ(1 + 1/ log x+ it)

∣

∣

∣

∣

dt

)

+O

(

x log2 x

T

)

.

(b) Define the Möbius function µ(n). Prove that if T andM are large, and 0 < σ 6 1
and T/2 6 t 6 T , then

ζ(σ + it)
∑

m6M

µ(m)

mσ+it
= 1 +

∑

min{M,T}<n6MT

an
nσ+it

+O

(

M logM

T σMσ

)

,

where an :=
∑

m|n,m6M,(n/m)6T µ(m).

[You may assume any standard results about the zeta function provided you state
them clearly.]
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