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Let M and N be manifolds of dimensions M and N , respectively. Let φ : M → N be
smooth.
(a) Briefly describe how (i) the pullback of a function f , (ii) the pushforward of a curve
λ, (iii) the pushforward of a vector V , and (iv) the pullback of a covector η are defined.

(b) Now consider the special case where M = N − 1, so that the image Σ := φ[M]
is a hypersurface in N . Let n be the unit normal field (assumed to be either timelike
everywhere or spacelike everywhere) on Σ and ⊥ the projector (in N ) onto Σ defined by

⊥a
b = δab ± nanb ,

where the upper sign corresponds to the case that n is timelike and the lower sign
corresponds to a spacelike n. Let p ∈ M be an arbitrary point.
i) Let V be a vector at p on M. Show that the pushforward of V satisfies

φ∗V = ⊥(φ∗V ) .

ii) Let ω be a tensor of type
(0
s

)

on N for an integer s > 1. Show that the pullback of ω
satisfies

φ∗ω = φ∗(⊥ω) .

iii) Let T be a tensor of type
(

r
0

)

on M for an integer r > 1. Show that the pushforward
of T satisfies

φ∗T = ⊥(φ∗T ) .

Here the projection of a tensor of arbitrary type
(

r
s

)

is defined by

⊥T a1...ar
b1...bs = ⊥a1

c1 . . .⊥
ar

cr⊥
d1

b1 . . .⊥
ds

bsT
c1...cr

d1...ds .

(c) Now consider the specific case where N = R
3 with Cartesian coordinates yα ≡ (x, y, z)

and Euclidean metric gαβ = δαβ , and M is the two-dimensional cylinder defined as the set
of points in R

3 with x2 + y2 = ρ2, where ρ > 0 is a constant. Let xi ≡ (ϕ, ẑ), 0 < ϕ < 2π,
ẑ ∈ R be coordinates on the cylinder (the need to introduce a second coordinate patch to
complete an atlas can be ignored for the purposes of this exercise). Let φ : M → N such
that p ∈ M with coordinates (ϕ, ẑ) is mapped to φ(p) ∈ N with coordinates

x = ρ cosϕ ,

y = ρ sinϕ ,

z = ẑ .

i) Calculate the pullback of the metric gαβ . What is the Riemann tensor associated with
the pullback of the metric (this does not require a calculation)?
ii) Calculate the trace of the extrinsic curvature on the cylinder. Note: specify the sign
convention you choose for the extrinsic curvature.
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In SI units, Newton’s gravitational constant and the speed of light have (up to three
significant digits) the values

G = 6.67 × 10−11 m3

kg s2
,

c = 3.00 × 108
m

s
.

Also in SI units, radius, mass and luminosity of the sun are given by

R⊙ = 6.96 × 108 m ,

M⊙ = 1.99 × 1030 kg ,

L⊙ = 3.85 × 1026 W ,

where 1 W = 1 kgm2/s3. In general relativity we often use units where G = 1 = c which
establishes a natural relation between the units of mass, time, and length.

(a) Using relativistic units where G = 1 = c, give an order-of-magnitude estimate for
the mass of the sun expressed (i) in metres, (ii) in seconds. Give an order-of-magnitude
estimate of the Newtonian gravitational potential at the surface of the sun.

(b) Give an order-of-magnitude estimate of the solar luminosity in relativistic units.
Assuming the solar luminosity to be constant, how many years would it roughly take
the sun to radiate its entire mass away?

(c) Give the definition of the quadrupole tensor Iij of a localized (inside a volume V)
matter distribution. What is the quadrupole tensor for a set of N discrete point particles
(i.e. their energy density is given by Dirac delta functions) of masses m(A) (A = 1, . . . , N)
at locations y(A) moving at speeds small compared to the speed of light?

(d) Now consider 2 point particles of equal mass m that start from rest at ±z0 (and
x0 = y0 = 0) and fall toward each other according to Newtonian gravity.

Using units where G = 1 = c, derive the equations of motion for the particles in the rest
frame of the centre of mass and show that the only non-zero component of the third time
derivative of the quadrupole tensor is given by

...
I zz =

m2

z2

√

m

2

√

1

z
−

1

z0
. (†)

(e) The quadrupole formula gives the power of the radiated gravitational waves as

P =
1

5

...
Qij

...
Qij ,

where Qij is the traceless quadrupole tensor.

By using the result of Eq. (†), calculate the power P as a function of z. Calculate the
total radiated energy predicted by the quadrupole formula for two particles falling in from
infinity, i.e. z0 → ∞, assuming that the particles stop radiating gravitational waves when
z = 2m. Give an order of magnitude estimate of the time (in years) it would take the
sun to radiate a similar fraction of its mass assuming a constant luminosity L⊙ as given
in question (b).
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On a Lorentzian or Riemannian manifold, the Riemann curvature tensor in a coordinate
basis xα is given by

Rµ
νρσ = ∂ρΓ

µ
νσ − ∂σΓ

µ
νρ + Γτ

νσΓ
µ
τρ − Γτ

νρΓ
µ
τσ ,

where Γα
βγ are the connection coefficients.

Let M and N be manifolds of dimension m and n > m, respectively. Let φ : M → N
be a smooth map, xi, i = 1, . . . , m be a coordinate chart on M, and yα, α = 1, . . . , n a
coordinate chart on N .

(a) Let p ∈ M be an arbitrary point. Show that in the corresponding coordinate bases
(∂/∂xi) and (∂/∂yα), the components V i of a vector V ∈ Tp(M) are related to the
components (φ∗V )α of its pushforward by

(φ∗V )α =
∂yα

∂xi
V i .

(b) Show that the components of a covector ω ∈ T ∗

φ(p)(N ) are related to those of its
pullback by

(φ∗ω)i =
∂yα

∂xi
ωα .

(c) Consider the Hamiltonian and momentum constraints of the 3+1 split of the Einstein
equations in vacuum given by

R+K2 −KijK
ij = 0 ,

DjK
j
i −DiK = 0 .

Here, i, j = 1, 2, 3 are spatial indices, Kij is the extrinsic curvature, and R and Di

are the Ricci curvature scalar and the covariant derivative associated with the Levi–

Civita connection of the three-dimensional induced metric γij . Assume that the extrinsic
curvature vanishes, Kij = 0, and that

γij = ψ4δij ,

where δij is the flat Euclidean metric diag(1, 1, 1) and the conformal factor ψ 6= 0 is an
unknown function of the xi.
Show that the constraint equations reduce to the flat-space Laplace equation for the
conformal factor ψ: △ψ = 0.

(d) For the case of asymptotically flat boundary conditions, i.e. limr→∞ ψ = 1, where
r =

√

(x1)2 + (x2)2 + (x3)2, find a non-trivial (i.e. non-constant) solution of the equation
derived in (c) for the conformal factor ψ.

Part III, Paper 50



5

4

(a) Consider the Lagrangian of the geodesic equation

L = −gµν
dxµ

dτ

dxν

dτ
,

for timelike dxµ/dτ , where µ = 0, . . . , 3, and τ is proper time along the geodesic. In the
Newtonian limit, we consider small velocities and the spacetime metric is given by

ds2 = −(1 + 2Φ)dt2 + (1− 2Φ)δijdx
i dxj ,

where xi, i = 1, . . . , 3, are spatial Cartesian coordinates, δij is the Kronecker delta, Φ is a
function |Φ(x1, x2, x3)| ≪ 1 and we only consider velocities much smaller than the speed
of light.

Show through variation of the Lagrangian L that the geodesic equation of motion
reproduces the Newtonian equation of motion for a particle in a gravitational field.

(b) In the linearized approximation to general relativity, we consider the metric

gµν = ηµν + hµν ,

where ηµν is the Minkowskian metric in Cartesian coordinates ηµν = diag(−1, 1, 1, 1),
the components of h are small, hµν ≪ 1, but in contrast to the Newtonian limit, time
derivatives are not neglected relative to spatial derivatives. In this case, the first order
perturbation of the Ricci tensor is

δRαβ =
1

2
(−ηµν∂µ∂νhαβ + ∂µ∂αh

µ
β + ∂µ∂βh

µ
α − ∂α∂βh) ,

where h ≡ hµµ and hµν ≡ ηµρhρν , i.e. indices in hµν are raised with the background metric.
i) Calculate the first order perturbation δGαβ of the Einstein tensor.
ii) Consider the Lagrangian

L = −
1

2

[

(∂µh
µν)(∂νh)− (∂µh

ρσ)(∂ρh
µ
σ) +

1

2
ηµν(∂µh

ρσ)(∂νhρσ)−
1

2
ηµν(∂µh)(∂νh)

]

.

Show that the Euler–Lagrange equation for varying the Lagrangian with respect to hαβ

produces the vacuum Einstein equations at first order, δGαβ = 0 with the δGαβ calculated
above.
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