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You are reminded of the equations of ideal magnetohydrodynamics in the form

∂ρ

∂t
+ u · ∇ρ = −ρ∇ · u

∂p

∂t
+ u · ∇p = −γp∇ · u

ρ

(

∂u

∂t
+ u · ∇u

)

= −ρ∇Φ−∇p+
1

µ0
(∇×B)×B

∂B

∂t
= ∇× (u×B)

∇2Φ = 4πGρ

You may assume that for any vectors C and D

∇·(C×D) = D·∇×C−C·∇×D and ∇×(C×D) = −D∇·C+C∇·D−C·∇D+D·∇C.

For u = (uR, uφ, uz) in cylindrical coordinates (R,φ, z), the components of u · ∇u are:

(

uR
∂uR
∂R

+
uφ
R

∂uR
∂φ

+ uz
∂uR
∂z

−
u2φ
R

,
uR
R

∂(Ruφ)

∂R
+

uφ
R

∂uφ
∂φ

+ uz
∂uφ
∂z

, uR
∂uz
∂R

+
uφ
R

∂uz
∂φ

+ uz
∂uz
∂z

)

,

∇× u =

(

1

R

∂uz
∂φ

− ∂uφ
∂z

,
∂uR
∂z

− ∂uz
∂R

,
1

R

(

∂(Ruφ)

∂R
− ∂uR

∂φ

))

and

∇ · u =
1

R

∂(RuR)

∂R
+

1

R

∂uφ
∂φ

+
∂uz
∂z

The symbols that appear in these equations may also appear in the questions without further

definition.
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a) Derive the conservation of energy equation for magnetized fluid moving under
the ideal MHD equations in a fixed gravitational field in the form

∂E
∂t

+∇ · F = 0,

where the energy density is given by

E = ρ

(

1

2
|u|2 +Φ

)

+
p

γ − 1
+

|B|2
2µ0

and the energy flux is given by

F = ρu

(

1

2
|u|2 +Φ+

γp

ρ(γ − 1)

)

− (u×B)×B

µ0
.

b) The fluid is axisymmetric and such that the magnetic field may be written, adopting
cylindrical coordinates (R,φ, z), in the form

B = Bp +Bφeφ,

where eφ is the unit vector in the azimuthal direction. The density ρ and the poloidal field
Bp are independent of time. The velocity is given by u = eφuφ. The azimuthal component
of velocity uφ and the toroidal component of the magnetic field Bφ are functions of R
and z and time. Show that the azimuthal components of the induction equation and the
equation of motion respectively give

∂Bφ

∂t
= RBp · ∇

(uφ
R

)

and

ρRµ0
∂uφ
∂t

= ∇ · (RBpBφ) .

c) Show that the ratio of the poloidal component of the energy flux to the poloidal
component of the angular momentum flux for these motions is equal to Ω = uφ/R. Explain
what condition Ω0(R, z) should satisfy in order that Ω = Ω0 be a steady state solution.
Show further that Ω satisfies the equation

ρR2µ0
∂2Ω

∂t2
= Bp · ∇

(

R2Bp · ∇Ω
)

.

d) Now consider solutions of the form Ω = Ω0 + v exp(i(k · r − ωt)), where k is the
wavenumber, ω is the wave angular frequency, and v is a complex wave amplitude.
Assuming that |k| and |ω| are very large so that the variation of all quantities other
than the exponentials can be neglected, derive the local dispersion relation in the form

ω2 =
(k ·Bp)

2

µ0ρ
.
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a) Starting from the equations of ideal magnetohydrodynamics, show that the
equation of motion of a self-gravitating gas with no external gravitational sources, moving
under a magnetic field B and its pressure p, may be written in the form

ρ
Dui
Dt

=
∂Tij

∂xj
,

where the summation convention has been used and Tij = Wij +Mij for i, j = 1, 2, 3 are
the components of a symmetric stress tensor with

Mij =
1

µ0

(

BiBj −
|B|2
2

δij

)

, and Wij = −pδij −
1

4πG

(

gigj −
|g|2
2

δij

)

.

The components of g are gi = −∂Φ/∂xi and the Cartesian coordinates (x1, x2, x3) ≡
(x, y, z).

b) Prove the tensor virial theorem in the form

1

2

d2Iij
dt2

= 2Kij − Tij, where Iij =

∫

xixjρdτ,

Kij =

∫

ρ

2
uiujdτ and Tij =

∫

Tijdτ.

Here it is assumed that the magnitudes of the components of Tij vanish sufficiently rapidly
at large distances that surface contributions become negligible as the domain of integration
is extended to the whole of space.

c) A cold axisymmetric magnetised gaseous configuration for which the pressure is
negligible is at rest. Show that

1

2

d2I⊥
dt2

=
1

4πG

∫

(

4πGB2
z

µ0
−
(

∂Φ

∂z

)2
)

dτ, (1)

where I⊥ =

∫

(x2 + y2)ρdτ.

d) Suppose now the matter is contained within an infinitesimally thin disk with z = 0
being the midplane and which extends to infinity horizontally. The contributions to the
integral in (1) then come from the current-free vacuum regions exterior to the disk, with
the regions above and below giving equal contributions on account of symmetry. By
integrating Poisson’s equation through the disk, show that on z = 0+, ∂Φ/∂z = 2πGΣ,
where it assumed that Φ, which satisfies Laplace’s equation, is an even function of z and
the surface density Σ =

∫

∞

−∞
ρdz.

Show further that in the vacuum region above the disk, there is a scaled magnetostatic
potential, ΦM , such that

√

4πG/µ0 B = −∇ΦM , which also satisfies Laplace’s equation,
∇2ΦM = 0, subject to the condition ∂ΦM/∂z = −

√

4πG/µ0Bz0 on z = 0+, with Bz0

being the vertical component of the magnetic field in the disk midplane. Thus ΦM is the
gravitational potential associated with a surface density −Bz0/

√
πGµ0.
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e) Assume that B2
z0 < πGµ0Σ

2 everywhere in the disk. By comparing the magnitudes
of the vertical component of the gravitational force per unit mass arising from the two
surface density distributions indicated above at an arbitrary point above the disk, show
that the integral in (1) is negative and hence that the disk starts to collapse towards its
centre.

3

a) Write down the equations governing the steady, spherically symmetric flow of a
polytropic gas for which p = Kργ , where K and γ > 1 are constants, in the gravitational
potential due to a point mass Φ = −GM/r. Show that the radial velocity, ur, satisfies the
equation

(

u2r − c2s
)

ur

dur
dr

=
2c2s
r

− GM

r2
,

where
c2s =

γp

ρ
.

What is meant by the statement that there is a critical point and what are the conditions
that should be satisfied there?

Show also that
1

2
u2r +

γp

(γ − 1)ρ
− GM

r
= C,

where C is a constant of integration.

b) A star has spherically symmetric wind for which the mass loss rate is Ṁ. It satisfies
the boundary conditions that as r → ∞, ρ → 0 and u2r → 2C. Define y such that y = ρrβ,
where β = 4/(γ + 1). Show that y can be obtained from the equation

F (r) = rα
(

C +
GM

r

)

=
γKyγ−1

(γ − 1)
+

Ṁ2

32π2y2
= G(y),

where α = 4(γ − 1)/(γ + 1). Find the condition that F (r) has a minimum and show that
when it does this occurs at r = rc = (GM/C)((5 − 3γ)/4(γ − 1)). Show that this is also
the radius of the critical point. Explain why the minima of F (r) and G(y) should coincide
and have the same value in order to obtain a regular solution that passes through r = rc.

By applying this condition, show that the mass loss rate is given by

Ṁ = 4πr2c (γK)−1/(γ−1)

(

2C(γ − 1)

5− 3γ

)(γ+1)/(2(γ−1))

.
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a) A non-magnetic star has a barotropic equilibrium state for which p = p(ρ).
As viewed in a cylindrical coordinate system (R,φ, z), the star is steady, axisymmetric
and rotates non-uniformly about the z axis with angular velocity Ω(R). Thus u = u0 =
(0, RΩ(R), 0). Show that p and ρ are functions only of the quantity Ψ, where

Ψ = Φ−
∫ R

0
R′Ω2(R′)dR′.

b) The star undergoes small-amplitude axisymmetric adiabatic perturbations with con-
stant γ, such that the velocity becomes u = u0 +u′, where the velocity perturbation u′ is
of the form

u′ = (−iωξR(R, z), vφ(R, z),−iωξz(R, z)) exp(−iωt).

The perturbation of the gravitational potential may be neglected (Cowling approximation).
Show that the azimuthal component of the linearized equation of motion gives

vφ + (ξR/R)d(R2Ω)/dR = 0.

Show that the linearization of the R and z components of the equation of motion gives

−ω2ξ = Fξ =
δρ

ρ2
∇p− 1

ρ
∇δp− κ2ξReR,

δρ = −∇ · (ρξ), δp = −ξ · ∇p− γp∇ · ξ.
Here κ2 = (2Ω/R)(d(R2Ω)/dR), ξ = (ξR, ξz) and eR is the unit vector in the radial
direction.

c) Show that the force operator F is self-adjoint with respect to the inner product

〈η, ξ〉 =
∫

ρη∗ · ξdτ.

Here the integral is taken over the volume occupied by the star which is assumed to have
a bounding surface on which p and ρ vanish. Hence show that

ω2

∫

ρ|ξ|2dτ = −〈ξ,Fξ〉 =
∫
( |δp|2

γp
+ ρN 2|ξ · ∇Ψ|2 + ρκ2|ξR|2

)

dτ,

where N is defined through N 2 = −1

ρ

dp

dΨ

(

1

γ

d ln p

dΨ
− d ln ρ

dΨ

)

.

Explain, giving relevant criteria, how the above expression can be used, with the help of
appropriate trial functions, to determine whether the system is stable or unstable.

d) Deduce that, if both N 2 > 0 and d(R2Ω)/dR > 0 everywhere in the star, it is stable.
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