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1

An axisymmetric disc galaxy has the property that a star in circular orbit of radius
R has velocity

v(R) = v0,

where R is cylindrical polar radius, and v0 is a constant. Show that the surface density of
the disc, assumed infinitesimally thin, is

Σ(R) =
v2
0

2πG

1

R
δ(z),

and that the three-dimensional potential is

φ(r, z) = v2
0
log(r + |z|),

where r is spherical polar radius and z is height above or below the disc.

Explain what is meant by the distribution function F of stars in the disc. Demon-
strate that the isotropic distribution function F depends on the energy E of stellar orbits
only.

Show that F (E) satisfies the integral equation

Σ(R) = 2π

∫

∞

φ

F (E)dE.

By regarding Σ as a function of φ, solve the integral equation and show that

F (E) =
1

4π2G
exp(−E/v2

0
).

Find the velocity dispersions of stars in the disc.

Show that the mean rotational velocity of the stars vanishes. If all the counter-
rotating stars have their azimuthal velocities reversed, what is the new streaming velocity
and why is it not equal to v0?

[Hint: You are reminded of the standard integral (α > 0)

∫

∞

−∞

exp(−αv2)dv =

√

π

α
]
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2

A piece of a galaxy rotating with uniform angular velocity Ω is modelled as a sheet
of gas in which the planar pressure P varies as Σγ , where Σ is the surface density and γ is
a constant. Stating carefully any assumptions, show that the dispersion relation for waves
of wavenumber k and angular frequency ω is

ω2 = k2c2 − 2πGΣ0|k|+ 4Ω2,

where c2 = γP0/Σ0.

For a non-rotating sheet, show that perturbations with wavenumber |k| < 2πGΣ0/c
2

are unstable.

For a rotating sheet with zero pressure, show that perturbations with wavenumber
|k| > 2Ω2/(πGΣ0) are unstable.

If both rotation and pressure operate, derive the condition for instability as

Ωc

GΣ0

>
π

2
.

At what wavelength does instability arise if c2 is slowly decreased, and what is the
characteristic size of the pieces into which the sheet breaks up?
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A Newtonian self-gravitating system comprises N point masses mk located at
positions rk relative to the centre of mass and moving with velocities vk = ṙk. The
kinetic energy T , potential energy U and moment of inertia 2I of the system are defined
as

T =
1

2

N
∑

k=1

mk|vk|2,

I =
1

2

N
∑

k=1

mk|rk|2,

U =
∑

16j<k6N

Gmjmk

rjk
,

where rjk = |rj − rk|. Prove the virial theorem in the form

d2I

dt2
= 2T − U = T + E,

where E = T − U is the total energy.

Show that an alternative expression for I is

I =
1

2M

∑

16j<k6N

mjmkr
2

jk,

where M is the total mass.

Let r denote the minimum spacing between particles (i.e., rjk > r for all pairs j, k)
and R denote the maximum spacing (i.e., rjk 6 R for all pairs j, k) at some instant in time.
Show that U 6 A0r

−1 for some A0 dependent on the masses, and that U > Gm1m2r
−1

where m1 and m2 are the two smallest masses. Hence, deduce that U−1 is a measure of r
in the sense that there exist positive constants A0 and B0 depending on the masses such
that

B0 6 rU 6 A0.

Show further that I is a measure of R2 in the sense that there exist positive constants
A1 and B1 depending on the masses such that

B1R
2
6 I 6 A1R

2.

Demonstrate that if E < 0, then the minimum spacing between particles is bounded
below.

Finally, show that if E > 0, the maximum spacing R increases at least as fast as
the first power in time.
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A particle with position vector r moves in a Keplerian potential φ(r) = −GM/r.
Show that the energy E and angular momentum L are integrals of the motion, where

L = r × ṙ,

1

2
ṙ2 +

L2

2r2
= E − φ(r). (1)

Here, dots denote time derivatives, while L = |L|.
Show additionally that the components of the Laplace-Runge-Lenz vector

A = ṙ × L− GMr

r

are also conserved.

By transforming to new variables r̄ = r̄(r) and t̄ = t̄(t), and denoting differentiation
with respect to t̄ by primes, show that eq.(1) takes the form

1

2
r̄′2 +

L2

2r̄2
=

r2

r̄2

(

E +
GM

r

)

, (2)

provided
r

r̄
=

(

dr̄

dr

)(

dt

dt̄

)

.

By identifying the last term on the right-hand side of eq. (2) as the new energy Ē, show
that the new potential is

φ̄(r̄) = −E

(

Ē

GM

)2

r̄2.

This therefore provides a mapping from orbits in the Kepler potential to the harmonic
oscillator.

If instead the transformed energy is taken as λ times the old potential and 1 − λ
times the old energy, show that

Ē =
(r

r̄

)

2
(

(1− λ)
GM

r
+ λE

)

,

φ̄(r̄) = −
(r

r̄

)2
(

(1− λ)E + λ
GM

r

)

.

Now, find r = r(r̄) and show that this defines a mapping from orbits in the Kepler
potential to the isochrone

φ̄(r̄) = − GM̄

b+
√
r̄2 + b2

+ k, (3)

where k is a constant and

b =
(1− λ)GM

2
√
λEĒ

.

[Remark: You are not required to find explicit expressions for M̄ or k in eq. (3).]
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