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1

Throughout this question work with real scalars.

What is meant by a locally convex space? Define the topology of a locally convex
space. [You do not need to verify that this is a topology.]

Define the dual space X∗ of a locally convex space X and prove that it separates
the points of X. [No version of the Hahn–Banach theorem can be assumed without proof.]

Let Y be a closed subspace of a locally convex space X, and let x0 ∈ X \ Y . Show
that there exists f ∈ X∗ with f(x0) = 1 and f(y) = 0 for all y ∈ Y .

2

Throughout this question X is a real Banach space and you are free to use any
version of the Hahn–Banach theorem (both extension and separation theorems) without
proof.

(i) Define the w∗-topology on the dual space X∗. State Goldstine’s Theorem.

(ii) Let E be a finite-dimensional subspace of X∗, let x∗∗ ∈ X∗∗ with ‖x∗∗‖ 6 1,
and let ε > 0. Prove that there is an x ∈ X such that ‖x‖ < 1 + ε and x∗∗(e) = e(x) for
all e ∈ E. Briefly explain how to use this result to prove Goldstine’s Theorem.

(iii) Let Y be a closed, finite-codimensional subspace of X∗. Briefly explain how
to find finitely many elements φ1, φ2, . . . , φn of X∗∗ such that Y =

⋂

n

k=1
kerφk. Set

F = span{φ1, φ2, . . . , φn} and assume that Y is w∗-dense in X∗. Show that F ∩X = {0}.
(Here we identify X with its canonical image in X∗∗.) Show that for some c > 0, Y is
c-norming for X:

c‖x‖ 6 sup{x∗(x) : x∗ ∈ Y, ‖x∗‖ 6 1} for all x ∈ X .

[Hint: First show that the distance d between SX (the unit sphere of X) and F is positive:

d = d(SX , F ) = inf{‖x− φ‖ : x ∈ SX , φ ∈ F} > 0 .

Given x ∈ SX , apply (ii) to E = span (F ∪ {x}) and a suitable functional on X∗∗ to show
that c = d works.]

(iv) Show that a subspace Z of X∗ that is c-norming for X for some c > 0 is
necessarily w∗-dense in X∗. Give an example of a Banach space X and a closed subspace
Z of X∗ that is 1-norming for X and has infinite codimension in X∗.
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Throughout this question K is a compact Hausdorff space, and C(K) is the Banach
space of continuous complex-valued functions on K with the uniform norm.

State the Riesz Representation Theorem. Explain very briefly how to deduce a
characterization of the dual space of C(K).

Let X be a complex Banach space, and let C be a non-empty, w∗-compact, convex
subset of the dual space X∗. Define what is meant by an extreme point of C. State the
Krein–Milman Theorem for C. Assume that S ⊂ C and the w∗-closure of the convex
hull of S is C. Prove that the w∗-closure of S contains all extreme points of C. [The
Hahn-Banach separation theorems may be used without proof.]

Identify with proof the set of extreme points of the closed unit ball of C(K)∗. [You
may use without proof any fact about faces of w∗-compact, convex sets.]

Let F be a finite-dimensional subspace of C[0, 1]. Given a complex, Borel measure
µ on [0, 1] with ‖µ‖1 = 1, and given ε > 0, show that there exist N ∈ N, w1, w2, . . . , wN ∈
[0, 1], and complex numbers t1, t2, . . . , tN with

∑

N

i=1
|ti| = 1 such that

∣

∣

∣

∫

1

0

f dµ−
N
∑

i=1

tif(wi)
∣

∣

∣
6 ε‖f‖ for all f ∈ F .

4

Let A be a complex, unital, commutative Banach algebra. Let x ∈ A and U be
an open subset of C that contains the spectrum σ(x) of x. Show that there is a unique,
continuous, unital algebra homomorphism Θx : O(U) → A such that Θx(u) = x, where
u ∈ O(U) is the function u(z) = z, z ∈ U . Show further that for each f ∈ O(U) we have
σ
(

Θx(f)
)

= {f(λ) : λ ∈ σ(x)}. [You may assume standard results from complex analysis
and vector-valued integration as well as elementary properties of invertible elements
and elementary spectral theory in Banach algebras. You may also assume Runge’s
approximation theorem provided it is clearly stated.]

Let X be a Banach space and T : X → X be a bounded linear map. Assume that
the spectrum of T is disconnected. Show that there is a proper, non-trivial closed subspace
Y of X that is invariant under T , i.e., Ty ∈ Y for all y ∈ Y . [Hint: Find a projection
P : X → X that is not zero or identity with PT = TP .]
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Let A be a complex commutative, unital Banach algebra.

What is a character on A? Show that characters on A are continuous. [You may
assume results about invertible elements.]

Define the spectrum ΦA of A. Define the Gelfand topology of ΦA, and prove that
ΦA is compact in the Gelfand topology. Show also that the spectrum of x ∈ A is
σ(x) = {φ(x) : φ ∈ ΦA}. [You may assume results about the w∗-topology and the
Gelfand–Mazur Theorem about normed division algebras.]

Now let A be a commutative, unital C∗-algebra. Show that the spectral radius of
x ∈ A is r(x) = ‖x‖. Show also that φ(x∗) = φ(x) for any x ∈ A and φ ∈ ΦA. [You may
assume the spectral radius formula and other results from elementary spectral theory.]

State and prove the Gelfand–Naimark Theorem.
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