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(i) Define the fidelity F (ρ, σ) of two states ρ and σ. Give an expression for the fidelity
of two pure states ϕ and ψ.

(ii) Clearly state Uhlmann’s theorem. Use it to prove monotonicity of the fidelity under
partial trace.

(iii) Let ρ denote the density matrix corresponding to an ensemble of states {px, ρx}
m
x=1

.
For each x ∈ {1, 2, . . . ,m}, let |ψρx〉 denote a purification of ρx. Find a purification
|ψρ〉 of ρ in terms of the |ψρx〉.

(iv) Using the above, prove joint concavity of the fidelity, i.e.,

F

(

m
∑

x=1

pxρx,

m
∑

x=1

pxσx

)

>

m
∑

x=1

pxF (ρx, σx) .
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(i) (a) Consider a memoryless classical channel with input and output alphabets given
by J = {1, 2, 3}, and transition matrix

p(y|x) =





q1 q2 q3
q3 q1 q2
q2 q3 q1



 ,

where qi > 0 for each i ∈ {1, 2, 3}, and q := {q1, q2, q3} forms a probability
distribution. If X and Y are the random variables corresponding respectively
to the input and output of this channel, find an expression for H(Y |X) in
terms of the entropy of the probability distribution q.

[Hint: Notice that the transition matrix is bistochastic.]

(b) Find an expression for the capacity of the channel, clearly stating the relevant
theorem.

(ii) Let X ∼ p(x) be a random variable taking values in a finite, discrete alphabet JX
with probability mass function p(x). Suppose we make an inference about X based
on knowledge of a random variable Y . Suppose our best guess of X is given by
a random variable f(Y ) (which is a function of Y and takes values in JX). The
probability pe of an erroneous inference is given by

pe = P (f(Y ) 6= X) .

(a) If Z is the indicator function Z = I(X 6= f(Y )), express the Shannon entropy
of Z in terms of the entropy of the probability distribution {pe, 1 − pe}.

(b) Verify that the conditional entropy H(Z,X|Y ) := H(X,Y,Z) −H(Y ) can be
expanded as follows:

H(Z,X|Y ) = H(X|Y ) +H(Z|X,Y ). (1)

Similarly find an alternative expansion of H(Z,X|Y ) as a sum of two condi-
tional entropies – one of them being H(X|Z, Y ).

(c) Using these two expansions of H(Z,X|Y ) prove that

H(X|Y ) 6 pe log (|JX | − 1) + h(pe)

(where h(pe) := −pe log pe − (1 − pe) log(1 − pe) denotes the binary entropy),
justifying each step clearly.

[Hint: Note that H(Z|X,Y ) = 0 since Z is a function of X and f(Y ), and
use the expansion

H(X|Z, Y ) = P (Z = 0)H(X|Y,Z = 0) + P (Z = 1)H(X|Y,Z = 1). ]
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(i) Define the Choi–Jamio lkowski state of a completely positive trace-preserving (CPTP)
map Λ which maps states in a Hilbert space H to states in a Hilbert space K.

(ii) A completely dephasing map Λ, with respect to a complete orthonormal basis
B := {|y〉} in a Hilbert space H, acts on a state ρ on the Hilbert space H as follows:

Λ(ρ) =
∑

y

|y〉〈y|ρ|y〉〈y|.

Prove that Λ is a CPTP map.

(iii) Find an expression for the von Neumann entropy S(σ) of the state σ := Λ(ρ).

(iv) Prove that S(σ) > S(ρ) [Hint: Use Klein’s inequality].

4

(i) State the necessary and sufficient condition for a bipartite pure state |ψAB〉 to be
transformed to another bipartite pure state |φAB〉 by local operations and classical
communication (LOCC) alone. Clearly explain any particular notation that you use.

(ii) Using the above, prove that the Schmidt rank of a bipartite pure state cannot be
increased by LOCC alone.

(iii) State the strong subadditivity property of the von Neumann entropy. Expressing
the property equivalently as an inequality between two relative entropies, justify it
using the monotonicity of the relative entropy under partial trace.

(iv) Let AB denote a composite quantum system which is in a state ρAB . Let Λ denote a
completely positive trace-preserving (CPTP) map acting on the subsystem B alone,
and let σA′B′ = (id ⊗ Λ)(ρAB) denote the state of the composite system after this
action. Here id denotes the identity map. Using the strong subadditivity of the von
Neumann entropy, prove that

I(A′ : B′)σ 6 I(A : B)ρ,

where I(A : B)ρ denotes the quantum mutual information of the state ρAB.
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Let ρ be the state of a quantum system A and let |ψρ
RA〉 ∈ HR ⊗ HA denote a

purification of ρ. Let Λ1 denote a quantum channel which acts on states of the system A

to yield states of a system B1. We denote this as Λ1 : A→ B1. The coherent information
of the channel Λ1, with respect to the input state ρ is defined as:

Ic (Λ1, ρ) := S(σB1
) − S(σRB1

),

where σRB1
:= (idR ⊗ Λ1)ψ

ρ
RA, with ψ

ρ
RA = |ψρ

RA〉〈ψ
ρ
RA|, and S(·) denoting the von

Neumann entropy.

(i) Prove that the coherent information can equivalently be expressed as a conditional
entropy between the systems R and E, where E denotes the environment in the
Stinespring dilation of the channel Λ1. State your reasons clearly.

(ii) Prove that Ic (Λ1, ρ) 6 S(ρ).

(iii) If Λ2 : B1 → B2 denotes another quantum channel, prove that

Ic (Λ2 ◦ Λ1, ρ) 6 Ic (Λ1, ρ) .

(iv) Using the above, prove the following quantum data-processing inequality for the
quantum mutual information:

I(R : B1)σ > I(R : B2)ω,

where ωRB2
:= (idR ⊗ Λ2 ◦ Λ1)ψρ

RA.
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