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1

What is a topologically complete subspace of a metric space?

Show that a topologically complete subspace Y of a complete metric space (X, d) is
a Gδ subset.

State whether the converse is true.

Show that a topologically complete normed space (E, ‖.‖) is a Banach space.

Show that the open unit ball of the dual of an infinite-dimensional Banach space,
with the weak*-topology is not topologically complete.

2

Let P (X) be the set of Borel probability measures on a Polish metric space (X, d).
What is the weak topology w on P (X)? What is the metric β? How are they related?

Suppose that A is an open subset of X. Show that the function µ → µ(A) is lower
semi-continuous on (P (X), w). State necessary and sufficient conditions, in terms of open
sets, and in terms of closed sets, for a sequence in P (X) to converge in the topology w.

Suppose that i : X → X̃ is a homeomorphism of X onto a dense subspace i(X) of
a compact metric space (X̃, d̃). If µ ∈ P (X), let j(µ) = i∗(µ), the push-forward measure
of µ. Show that j : P (X) → P (X̃) is a homeomorphism, when P (X̃) is given its weak
topology w̃.

Show that a w-closed uniformly tight subset S of P (X) is w-compact.

Use this to show that (P (X), w) is a Polish space. [You may assume that a β-totally
bounded set is uniformly tight.]
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3

Suppose that X and Y are Polish spaces, that µ ∈ P (X) and ν ∈ P (Y ), that c is
a continuous non-negative cost function on X × Y , and that π is a transport plan. What
does it mean to say that π is c-monotone, and that π is strictly c-monotone?

Show that a c-monotone transport plan is strictly c-monotone, and that it is optimal.
State whether the converse is true.

Let X = [0, 1] and Y = [1, 2], with their usual topologies, and suppose that µ and ν

have continuous strictly positive densities f and g respectively. What is the set of optimal
deterministic transport plans

(a) when c(x, y) = y − x, and

(b) when c(x, y) = (y − x)2?

Justify your answers.

4

Suppose that K is a compact convex metrizable set. What is the upper envelope f

of a bounded function f on K?

Show that if µ is a Borel probability measure on K and f ∈ C(K) then there exists
a Borel probability measure ν on K such that

∫
K
f dν =

∫
K
f dµ and

∫
K
g dν 6

∫
K
g dµ

for all g ∈ C(K).

State and prove Choquet’s theorem. [You may assume that Ex(K) is a Gδ set and
that there is a strictly convex function in C(K).]

Let f be in the unit ball of (L∞[0, 1], ‖.‖∞). Find a measure ν which satisfies the
conclusions of Choquet’s theorem. [Hint: First consider the case where f = IA−IB, where

A and B are disjoint.]
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