

MATHEMATICAL TRIPOS Part III

Wednesday, 4 June, 2014 1:30 pm to 4:30 pm

PAPER 8

ANALYSIS ON POLISH SPACES

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

What is a *topologically complete* subspace of a metric space?

Show that a topologically complete subspace Y of a complete metric space (X,d) is a G_{δ} subset.

State whether the converse is true.

Show that a topologically complete normed space $(E, \|.\|)$ is a Banach space.

Show that the open unit ball of the dual of an infinite-dimensional Banach space, with the weak*-topology is not topologically complete.

$\mathbf{2}$

Let P(X) be the set of Borel probability measures on a Polish metric space (X, d). What is the *weak topology w* on P(X)? What is the metric β ? How are they related?

Suppose that A is an open subset of X. Show that the function $\mu \to \mu(A)$ is lower semi-continuous on (P(X), w). State necessary and sufficient conditions, in terms of open sets, and in terms of closed sets, for a sequence in P(X) to converge in the topology w.

Suppose that $i: X \to \tilde{X}$ is a homeomorphism of X onto a dense subspace i(X) of a compact metric space (\tilde{X}, \tilde{d}) . If $\mu \in P(X)$, let $j(\mu) = i_*(\mu)$, the push-forward measure of μ . Show that $j: P(X) \to P(\tilde{X})$ is a homeomorphism, when $P(\tilde{X})$ is given its weak topology \tilde{w} .

Show that a w-closed uniformly tight subset S of P(X) is w-compact.

Use this to show that (P(X), w) is a Polish space. [You may assume that a β -totally bounded set is uniformly tight.]

UNIVERSITY OF

3

Suppose that X and Y are Polish spaces, that $\mu \in P(X)$ and $\nu \in P(Y)$, that c is a continuous non-negative cost function on $X \times Y$, and that π is a transport plan. What does it mean to say that π is *c-monotone*, and that π is *strictly c-monotone*?

Show that a *c*-monotone transport plan is strictly *c*-monotone, and that it is optimal. State whether the converse is true.

Let X = [0, 1] and Y = [1, 2], with their usual topologies, and suppose that μ and ν have continuous strictly positive densities f and g respectively. What is the set of optimal deterministic transport plans

(a) when
$$c(x, y) = y - x$$
, and

(b) when $c(x, y) = (y - x)^2$?

Justify your answers.

 $\mathbf{4}$

Suppose that K is a compact convex metrizable set. What is the upper envelope \overline{f} of a bounded function f on K?

Show that if μ is a Borel probability measure on K and $f \in C(K)$ then there exists a Borel probability measure ν on K such that $\int_K f \, d\nu = \int_K \overline{f} \, d\mu$ and $\int_K g \, d\nu \leq \int_K \overline{g} \, d\mu$ for all $g \in C(K)$.

State and prove Choquet's theorem. [You may assume that Ex(K) is a G_{δ} set and that there is a strictly convex function in C(K).]

Let f be in the unit ball of $(L^{\infty}[0,1], \|.\|_{\infty})$. Find a measure ν which satisfies the conclusions of Choquet's theorem. [*Hint: First consider the case where* $f = I_A - I_B$, where A and B are disjoint.]

END OF PAPER