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The one-dimensional spin S quantum Heisenberg Ferromagnet is specified by the
Hamiltonian,

Ĥ = −J

N
∑

n=1

Ŝn · Ŝn+1 ,

where J > 0, and periodic boundary conditions are imposed such that ŜN+1 = Ŝ1. Specify
one of the possible ferromagnetic ground states and explain how other ground states can
be generated from it. What are the physical consequences of the ground state degeneracy
for the low-energy spectrum of spin fluctuations?

(a) Show that the Holstein–Primakoff transformation,

Ŝ+ = (2S)1/2
(

1−
a†a

2S

)1/2

a, Ŝ− = (Ŝ+)†, Ŝz = S − a†a ,

is consistent with the quantum spin algebra of spin S.

(b) Taking the spin to be large S ≫ 1, expand the ferromagnetic Hamiltonian, Ĥ,
around a ground state. Confirm that, to order S, the Hamiltonian can be written
as a bilinear in the boson operators a and a†.

(c) Bringing the Hamiltonian to diagonal form, show that the excitation spectrum of the
resulting Hamiltonian is given by

ωk = JS sin2(k/2) .

Define the quantum numbers k and comment on the form of the low-energy
spectrum.

(d) Including an exchange interaction between next-nearest neighbour spins, the Hamil-
tonian takes the form,

Ĥ = −

N
∑

n=1

[

J1Ŝn · Ŝn+1 + J2Ŝn · Ŝn+2

]

,

where both J1 > 0 and J2 > 0. Once again, imposing periodic boundary conditions,
ŜN+1 = Ŝ1 and ŜN+2 = Ŝ2, obtain the spectrum of the Hamiltonian.
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The weakly interacting Bose gas in a box of size L is defined by the Hamiltonian,

Ĥ =
∑

k

ǫk b
†
kbk +

1

2L3

∑

k,k′,q

Vq b
†
kb

†
k′bk′+qbk−q ,

where the operators b†k and bk obey bosonic commutation relations, and ǫk =
~
2k2

2m
describes the free particle dispersion of particles with mass m.

(a) At low temperatures, a macroscopic fraction of particles condense into the non-
interacting (k = 0) ground state. In this limit, show that the Hamiltonian takes the
approximate form,

Ĥ ≃
L3

2
V0n

2 +
∑

k 6=0

[

(ǫk + nVk) b
†
k
bk +

n

2

(

Vkb
†
k
b†−k

+ h.c.
)]

,

where n = N/L3 denotes the particle density. Comment both on the physical origin
of each of the terms in the expansion of the Hamiltonian, and the scale of the terms
that have been neglected.

(b) By implementing an appropriate canonical transformation of the boson operators,
show that the Hamiltonian can be brought to the diagonal form,

Ĥ =
L3

2
V0n

2 −
1

2

∑

k 6=0

(ǫk + nVk) +
∑

k 6=0

Ek

(

α†
kαk + 1/2

)

,

where the operators α†
k and αk obey bosonic commutation relations. Sketch and

comment upon the low-energy form of the quasi-particle dispersion Ek.

(c) Show that the density of particles outside the condensate is given by

n− n0 =
1

2L3

∑

k 6=0

(

ǫk + nVk
Ek

− 1

)

.
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The quantum rotor is defined by the Hamiltonian,

Ĥ =
ℓ̂2

2I
,

where ℓ̂ = −i~∂φ denotes the angular momentum operator and φ the angular coordinate.

(a) By finding the eigenstates of the rotor Hamiltonian, show that the quantum partition

function Z = Tr e−βĤ is given by the sum

Z =
∞
∑

n=−∞

exp

[

−β
~
2n2

2I

]

.

(b) Explain the physical meaning of the propagator, 〈φF| exp

[

−
i

~
Ĥt

]

|φI〉. Starting from

the Feynman path integral for the propagator, show that the partition function can
also be expressed as the functional integral,

Z =

∫ 2π

0
dφ

∞
∑

m=−∞

∫

φ(0)=φ, φ(β)=φ+2πm
Dφ(τ) exp

[

−
1

~2

∫ β

0
dτ

I

2
φ̇2

]

.

(c) By evaluating the path integral, show that

Z = 2πZ0

∞
∑

m=−∞

exp

[

−
I

2~2
(2πm)2

β

]

,

and provide the physical interpretation of the prefactor Z0.

(d) Making use of the free particle propagator, 〈q| exp

[

−
i

~

p̂2

2M
t

]

|q〉 =

(

M

2πi~t

)1/2

, and

the Poisson summation formula,

∞
∑

m=−∞

h(m) =

∞
∑

n=−∞

∫ ∞

−∞

dφ h(φ) e2πinφ ,

show that this expression is consistent with that obtained in part (a).

(e) Consider now a one-dimensional array of coupled quantum rotors (with unit spacing)
defined by the Hamiltonian,

Ĥ =
∑

n

[

ℓ̂2n
2I

− J cos(φn+1 − φn)

]

,

where J > 0 represents the strength of the coupling. Taking φn+1 − φn ≪ 1, show
that the path integral of the one-dimensional system has the continuum limit

Z =

∫

Dφ(x, τ) exp

[

−
1

~2

∫ β

0
dτ

∫

dx

(

I

2
φ̇2 +

J

2
(∂xφ)

2

)]

.

Comparing this expression to that of a superfluid, discuss the nature of the low
energy collective excitations of the array.
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As a model of itinerant ferromagnetism, consider a variant of the Hubbard Hamil-
tonian describing the contact interaction of electrons,

Ĥ =
∑

k,σ

ǫk c
†
kσckσ − 2U

∑

n

(

Ŝ2
n −

3

4
n̂n

)

,

where the operators, c†kσ and ckσ, obey fermionic anticommutation relations, Ŝn =

(1/2)
∑

α,β c
†
nασαβcnβ denotes the electron spin operator at lattice site n, and n̂n =

∑

σ c
†
nσcnσ denotes the local number operator. The sum on n runs over the N sites

of a cubic lattice, and the sum on reciprocal lattice vectors, k, spans the first Brillouin
zone.

(a) Rewriting the Hamiltonian in normal ordered form, express the quantum partition

function, Z = tr e−β(Ĥ−µN̂), in the form of a coherent state field integral, where
β = 1/kBT and µ denotes the chemical potential.

(b) By evaluating the field integral, show that the Helmholtz free energy of the non-
interacting electron gas (U = 0) is given by

F = −2kBT
∑

k

ln[1 + e−β(ǫk−µ)] .

[Hint: When summed over fermion Matsubara frequencies, you may note that
∑

ωn

ln(−iωn + z) = ln(1 + e−βz).]

(c) Making use of a Hubbard-Stratonovich decoupling scheme, show that the quantum
partition function of the interacting Hamiltonian can be cast in the form, Z =
∫

DM
∫

D(ψ̄σ, ψσ) e
−S , where the action is given by

S =

∫ β

0
dτ

∑

kσ

ψ̄k,σ (∂τ + ǫk − µ)ψkσ

+

∫ β

0
dτ

∑

n





M2
n

2U
−

∑

α,β

ψ̄nα Mn · σαβ ψnβ



 .

[Hint: You may wish to consider proving this result by performing the functional
integral over Mn(τ) and comparing your answer with that of part (a).]

(d) In the mean-field approximation, the Hubbard-Stratonovich field, Mn, can be taken
as spatially and temporally homogeneous, oriented along, say, the z-direction,
Mn = M êz. In this approximation, integrating out the fermion fields ψ̄σ and
ψσ, show that Z =

∫

DM e−Seff , where

Seff [M ] = −
∑

k,σ

ln
[

1 + e−β(ǫk−µ−σM)
]

+ βN
M2

2U
.
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(e) In the saddle-point (mean-field) approximation, show that

M =
U

2

∑

σ=±1

∫

dǫ ν(ǫ)nF(ǫ− σM)σ ,

where ν(ǫ) represents the density of states of the non-interacting electron gas at
energy ǫ, and nF(ǫ) = 1/(1 + eβ(ǫ−µ)) denotes the Fermi distribution function.

(f) Using the expansion, nF(ǫ−σM) = nF(ǫ)−σM∂ǫnF(ǫ)+O(M2), show that the system
becomes unstable towards the development of a non-zero M when U > Uc, where
Ucν(0) ≃ 1. Comment on the expected properties of the low-energy excitations in
this ordered phase.

END OF PAPER
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