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(i) State and prove Chebyshev’s inequality.

(ii) Let p : N → [0, 1] be a function such that np(n) → ∞ as n → ∞. Prove that if
G is a random graph with n vertices, where the edges are chosen independently, each with
probability p(n), then the probability that G contains at least 2p(n)3

(n
3

)

triangles tends
to zero as n tends to infinity.

2 Let A be a subset of Zn of density α. Let K = {r : |Â(r)| > θ} and let B be the
Bohr set B(K; ǫ) = {x : ∀r ∈ K |1− ωrx| 6 ǫ}, where ω = exp(2πi/n).

(i) Let f = A ∗ A, let u ∈ Zn and let g(x) = f(x − u) for every x ∈ Zn. Find
expressions for the Fourier transforms of f and g in terms of Â.

(ii) Prove that ‖Â‖4
4
6 α3.

(iii) Prove that if u ∈ B, then ‖f−g‖2
2
6 ǫ2α3+4θ2α.

3 State and prove Plünnecke’s inequality.

4 Assuming Szemerédi’s regularity lemma and any facts you like about quasirandom
graphs, prove that for every δ > 0 there exists n such that for every subset A ⊂ [n]2 of size
at least δn2 there exist x, y, d such that d 6= 0 and the points (x, y), (x, y+d) and (x+d, y)
all belong to A.

5 Prove that if A ⊂ F
n
p contains a line in every direction, then |A| > pn/n!.

6 Let G be a bipartite graph with vertex sets X and Y , both of size n. Sup-
pose that every vertex of G has degree δn and that the 4-cycle density of G is at most
δ4(1 + c4). Let A ⊂ X and B ⊂ Y be subsets of density α and β, respectively. Prove
that the number of edges from A to B differs from δ|A||B| by at most cδ(αβ)1/2n2.
[If you wish to use facts about the 4-cycle norm, then you should prove them first.]
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