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Let θ : R → A be a homomorphism of commutative rings and M and N be

A-modules; show that there is a natural map of R-modules (and indeed A-modules)

M ⊗R N → M ⊗A N .

Let φ : (X,OX ) → (Y,OY ) be a morphism of varieties, let F , G be arbitrary OX -

modules and let H be an OY -module. Describe in detail the constructions of

(i) the OX -module F ⊗OX
G,

(ii) the OY -module φ∗F , and

(iii) the OX -module φ∗H.

Exhibit a canonical morphism of OY -modules H → φ∗φ
∗H, and interpret this in

the case when H = OY .

By constructing a certain morphism of OY -modules

φ∗F ⊗OY
φ∗G → φ∗(F ⊗OX

G)

for any OX-modules F and G, deduce the existence of a morphism of OY -modules (for

any OX-module F and OY -module H)

φ∗F ⊗OY
H → φ∗(F ⊗OX

φ∗H),

which is an isomorphism whenever H is locally free of finite rank.

[The construction of the sheafification of a presheaf, and its properties, may be

assumed in this question. You should not however assume that the sheaves are quasi-

coherent.]
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Let (X,OX ) denote an algebraic variety over an algebraically closed field k. We

assume that the variety X has the property that H1(X,I) = 0 for all coherent sheaves of

ideals I ⊆ OX , and we let A denote the k-algebra H0(X,OX ).

(a) If r > 0 and F ⊂ O r
X a coherent OX -submodule, prove, by induction on r or

otherwise, that H1(X,F) = 0.

(b) If P ∈ X has an open affine neighbourhood U ∋ P with Y := X \U , prove that

there exists f ∈ A such that Y ⊆ V (f) ⊆ X, where Xf := {x ∈ X : f(x) 6= 0} is affine

and f(P ) = 1.

(c) By repeated use of (b), we can find f1, . . . , fr ∈ A such that Xfi is affine for

each i and X =
⋃r

i=1
Xfi ; prove that there exist g1, . . . , gr ∈ A such that

∑r
i=1

gifi = 1.

[Hint: Use result from (a).]

(d) Deduce from (c) that there exists a subring B ⊆ A, containing the fi and gi,

such that B is a finitely generated k-algebra and Bfi = Afi for all i. For any N > 0, show

that the ideal 〈fN
1
, . . . , fN

r 〉 in B is the whole ring. Deduce further that A = B and hence

A is a finitely generated (reduced) k-algebra.

(e) Let Y denote the affine variety with coordinate ring A. By defining a suitable

isomorphisn φ : X → Y , show that X is an affine variety.

If X now is an affine variety and I ⊂ OX a coherent sheaf of ideals, explain briefly

why the converse to the above result holds, namely that H1(X,I) = 0.

If X = Pn \ Z where each component of the closed subvariety Z has codimension

at least two; exhibit an explicit sheaf of ideals I for which H1(X,I) 6= 0.

[Standard properties of sheaf cohomology may be assumed in this question.]
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For F a sheaf of abelian groups on a topological space X and U = {U1, . . . , Ud}

an open cover of X, describe the construction of the Čech cohomology groups Ȟ i(U ,F)

and prove that Ȟ0(U ,F) ∼= F(X). If X is a variety and F a quasi-coherent sheaf, state

a condition on U for Ȟ i(U ,F) to be isomorphic to the sheaf cohomology group H i(X,F)

for all i > 0.

For a variety (X,OX ), consider the multiplicative sheaf of units O∗
X in the structure

sheaf. Show that the subgroup Pic(X)U of the Picard group Pic(X), consisting of

isomorphism classes of invertible sheaves which are trivialized with respect to the open

cover U , is isomorphic to Ȟ1(U ,O∗
X ). [You may assume that the isomorphism class of

an invertible sheaf is determined by giving its transition functions with respect to an open

cover.]

Now let V be an irreducible variety and K∗ the (constant) multiplicative sheaf of

non-zero rational functions — so H0(U,K∗) = k(V )∗ for any non-empty open set U .

Prove that there is a natural map k(V )∗ → H0(V,K∗/O∗
V ), whose cokernel is isomorphic

to Pic(V ). Quoting any results on sheaf cohomology that you may need, deduce that

Pic(V ) ∼= H1(V,O∗
V ).

Let V ⊂ P3 be an irreducible smooth quadric surface, whose curve at infinity C is

a smooth conic, and let U = V \ C be the corresponding smooth affine quadric surface;

prove that Pic(U) is non-trivial.
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For V an irreducible variety, describe the construction of the coherent OV -module

of Kähler forms Ω1

V . For P ∈ V , define the Zariski tangent space TV,P and show that

TV,P is the dual space of Ω1

V,P/mPΩ
1

V,P , where Ω1

V,P denotes the stalk of Ω1

V at P and

mP ⊂ OV,P is the maximal ideal of the local ring OV,P .

Define what is meant by P ∈ V being a smooth point of V . Assuming the result that

the smooth locus is open and dense, state and prove the Jacobian criterion (in terms of a

matrix of partial derivatives evaluated at P ) for a point on an affine variety V ⊆ AN to be

smooth. For V any irreducible smooth variety, show that Ω1

V is a locally free OV -module

of rank n, where n = dimV .

Suppose W ⊆ V are arbitrary irreducible varieties with W a non-empty closed

subvariety of V , and let IW ⊂ OV denote the corresponding sheaf of ideals. If ι : W →֒ V

denotes the inclusion morphism, and M an OV -module on V , let M|W denote the OW -

module ι∗M. For M a quasi-coherent OV -module, give (without proof) an explicit

description of M|W on affine pieces. Show that there is an exact sequence of sheaves

on W

IW/I2

W → Ω1

V |W → Ω1

W → 0.

In the case when W is locally principal and not contained in the singular locus of V , show

that the sheaf IW/I2

W is an invertible OW -module and the morphism IW/I2

W → Ω1

V |W is

injective.

[Standard results about quasi-coherent sheaves on affine varieties may be assumed

in this question.]
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