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LIE ALGEBRAS AND THEIR REPRESENTATIONS
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1

What does it mean for an element x ∈ End(V ) to be nilpotent? What does it mean
for a Lie algebra to be nilpotent?

Let k be an arbitrary field. State and prove Engel’s theorem for Lie algebras over
k.

Prove, or give a counterexample to the following. There is a basis of V such that
a given nilpotent Lie subalgebra h of gl(V ) is represented by strictly upper-triangular
matrices.

Deduce from Engel’s theorem that (*) a Lie algebra g is nilpotent if and only if for
every x ∈ g we have ad x is a nilpotent endomorphism g → g.

Now let k be algebraically closed (or k = C if you prefer). Using (*) or otherwise,
prove that a Lie algebra is nilpotent if and only if every two dimensional subalgebra is
abelian.

2

Let V be a representation for g = sl2 = 〈X,H, Y 〉 and let v ∈ V be a highest weight
vector of weight m for g. Prove by induction that

(XY )Y kv = (k + 1)(m− k)Y kv.

State and prove Freudenthal’s multiplicity formula.

You may assume the existence and any properties of a Casimir operator, the Cartan
decomposition, the Killing form, simple roots, fundamental dominant weights, subalgebras
sα = 〈Xα,Hα, Yα〉.
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3

Let V be a finite-dimensional vector space and let X ∈ gl(V ). Prove that there
exist a diagonalisable element Xs ∈ gl(V ) and nilpotent element Xn ∈ gl(V ) which are
unique subject to X = Xs +Xn and [Xs,Xn] = 0.

With the above notation, prove (adX)s = ad(Xs) and (adX)n = adXn.

Now let g ⊆ gl(V ) be a semisimple Lie algebra. Prove that for all X ∈ g, we have
Xn and Xs also in g.

You may use Weyl’s theorem on complete reducibility and Schur’s lemma.

Give examples of non-semisimple subalgebras g ⊆ gl(V ) where the implication

X ∈ g ⇒ (Xn ∈ g and Xs ∈ g)

(i) holds, and (ii) doesn’t hold.

4

If V is a finite-dimensional representation of a Lie algebra g over a field k with basis
{v1, . . . , vn}, then construct the representation

∧

2
V of g.

For any two finite-dimensional representations V and W of a Lie algebra g, prove
that

∧2

(V ⊕W ) ∼=
∧2

V ⊕
∧2

W ⊕ (V ⊗W ). (*)

Let g = sl3(C) and let V = Γ1,0 be the natural representation. Calculate the
decomposition into irreducibles of

∧2 (

(S2V )⊗ V ∗
)

.

(Hint: it is highly recommended to use (*) when possible.)
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5

Define the notion of a Cartan subalgebra h of a semisimple Lie algebra g and indicate
how it gives rise to a set of roots R of g.

Show that for every root α there is a subalgebra sα ∼= sl2 of g with basis
{Xα, Yα,Hα}, with Xα ∈ gα, Yα ∈ g−α and Hα ∈ h, satisfying [Hα,Xα] = 2Xα,
[Hα, Yα] = −2Yα and [Xα, Yα] = Hα.

(You may assume that ‘weights add’ and any properties of the Killing form if stated
clearly. You may use Lie’s theorem without proof.)

State the axioms defining an abstract root system.

By verifying each axiom above, show that for the set of roots R of g, the subset
R ⊆ E := RR = ZR⊗ZR is an abstract root system, where E is equipped with the Killing
form.

(You may use any facts about the representation theory of sl2 if stated clearly.)

6

Define a (real) Lie group G and its tangent space at the identity, Te(G).

Define the exponential and logarithm maps on G when G = GLn.

Assuming the existence of an exponential map exp : g := Te(G) → G satisfying
d exp : g → g is the identity map, use the implicit function theorem to define the define
the Lie bracket and show it is anti-symmetric and bilinear.

Define the maps Ad and ad and show ad(X)Y = [X,Y ]. Prove the Jacobi identity.

You may assume the following facts:

1. Given f : G → H a Lie group homomorphism and X ∈ TeG, we have that
f(expX) = exp(dfeX).

2. Using the exponential map, one can prove: given f : G → H a Lie group homomor-
phism with G connected, then f is completely determined by dfe : TeG → TeH.

3. Let G and H be maps of Lie groups with G simply connected and let g and h be
their Lie algebras. A linear map α : g → h is the differential of a map A : G → H

of Lie groups if and only if α is a map of Lie algebras.

Show that a subgroup H of a Lie group G is normal implies that the corresponding
Lie algebra h is an ideal of g.
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