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1

(a) Define a morphism X → Y between schemes.

(b) Let X be an arbitrary scheme, Y = SpecA an affine scheme. Show that the set
of morphisms X → Y is in one-to-one correspondence with the set of ring homomorphisms
A → Γ(X,OX).

(c) Let A be a local ring. Show that the set of morphisms SpecA → P
n
Z
is in one-to-

one correspondence with the following set T . We consider the subset S ⊆ An+1 consisting
of (n + 1)-tuples of elements in A with at least one entry in A×, the group of units of
A. Then T is the set of equivalence classes of S for the equivalence relation such that
(ai) ∼ (a′i) if and only if there exists a ∈ A× such that (aai) = (a′i).

State briefly what goes wrong with your argument if A is not a local ring?
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(a) Define the notion of scheme-theoretic fibre of a morphism f : X → Y .

(b) Describe the fibres of the following morphisms defined by the obvious maps of
rings in each case.

Spec k[T,U ]/(T 2 − U2) → Speck[T ]

SpecZ[T ]/(T 2 + 1) → SpecZ

SpecC → SpecZ

(c) Let S, X and Y be schemes, f : X → S, g : Y → S be morphisms. Let
p : X ×S Y → X, q : X ×S Y → Y be the projections. Show that there exists a point
z ∈ X ×S Y with p(z) = x, q(z) = y if and only if f(x) = g(y). [Hint: Use the fact that if
K ⊆ L,L′ are two field extensions of K, then L⊗K L′ is non-zero.]

(d) Show that a morphism being surjective is stable under base-change.

3

(a) State Riemann-Roch for curves.

(b) Let C be a non-singular projective curve of genus 4, and assume C is not
hyperelliptic. Show C can be embedded in P

3 as a complete intersection of a quadric
surface and cubic surface.

(c) Let C ⊆ P
n be a non-singular projective curve of degree 5, and assume that C

is not contained in a plane. Show the genus of C is at most 2.
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(a) Define the notion of closed immersion.

(b) Show that if f : X → Y and g : Y → Z are closed immersions, then so is g ◦ f .

(c) Show that being a closed immersion is stable under base-change.

(d) Define the notion of a separated morphism.

(e) Let f : X → Y , g : Y → Z be morphisms with g separated. Show that the
morphism Γf : X → X ×Z Y induced by the identity map X → X and f : X → Y is a
closed immersion.

Suppose further that g ◦ f is a closed immersion. Show that f is also a closed
immersion.

5

(a) Let X be a scheme over a field k, L a line bundle on X.

Say what it means for L to be generated by global sections.

If L is generated by global sections, sketch how to construct a morphism X → P
n
k .

If X is a projecive non-singular scheme, state a criterion for when such a morphism
is a closed immersion.

(b) Let C ⊆ P
2 be an irreducible curve of degree d. What is Cl(P2 \ C)?

(c) Let X ⊆ P
3 be the quadric surface given by x0x1−x2x3 = 0. Consider the linear

system d on X given by

d = {X ∩H |H ⊆ P
3 a plane containing P = (1, 0, 0, 1)}.

Show this linear system defines a morphism ϕ : X \ {P} → P
2. Describe the fibres of this

morphism.

(d) Consider the curve C ⊆ A
2 defined by the equation x2 − y5 = 0. Describe a

sequence of blow-ups Xn → Xn−1 → · · · → X1 = A
2 such that the proper transform of C

in Xn has no singular point mapping to 0 ∈ A
2.
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