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Let L be a language. If F is a filter on a set I (not necessarily an ultrafilter) and
for each i ∈ I, Mi is an L-structure, then we call

∏

i∈I
Mi/F the reduced product by F .

Recall that  Loś’s theorem says that if F is an ultrafilter, then for every formula ϕ
and every finite tuple f0, ..., fk of functions from the product, we have

∏

i∈I

Mi/F |= ϕ([f0], ..., [fk]) ⇐⇒ {i ∈ I ; Mi |= ϕ(f0(i), ..., fk(i)} ∈ F.

(a) The class of tame formulas is defined as the closure of the atomic formulas under
∧ and ∃. Show that  Loś’s theorem restricted to tame formulas holds for reduced
products (i.e., without assuming that F is an ultrafilter).

(b) Show that  Loś’s theorem does not hold in general for reduced products if formulas
contain ∨.

(c) Show that  Loś’s theorem does not hold in general for reduced products if formulas
contain ¬.

(d) Let κ be an infinite cardinal. Define what it means for an ultrafilter U on a set X
to be κ-complete.

(e) Suppose M = (M, ...) is an L-structure such that the cardinality of M is at least
κ. Let U be a κ-complete nonprincipal ultrafilter on κ. Show that the ultrapower
of M by U has more than κ many elements.
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(a) State precisely the first quantifier elimination test QET1 from the lecture (in words:
“Suppose that if two models of T have a common substructure, and any quantifier-
free formula with parameters in the substructure has a witness in the first model,
then it does in the second. Then T has quantifier elimination”).

(b) Derive the following quantifier elimination test QET2 from QET1, giving proper
definitions for all terms occurring in the statement:

Suppose that T has algebraically prime models and for every
M ⊆ N with M |= T and N |= T , M is simply closed in N .
Then T has quantifier elimination.

(QET2)

(c) Let DAG be the theory of non-trivial torsion-free divisible Abelian groups in the
language of groups. This means that it consists of the axioms of Abelian groups,
the statement ∃x(x 6= 0), and for each n > 1, the axioms

∀y∃x(x + . . . + x
︸ ︷︷ ︸

n times

= y) and

∀x(x 6= 0 → x + . . . + x
︸ ︷︷ ︸

n times

6= 0).

Show that DAG has algebraically prime models. (In your algebraic constructions of
the algebraically prime models, you may assume without proof that your definitions
are well-defined.)

(d) Let DAG
′ be the theory DAG without the non-triviality axiom ∃x(x 6= 0). Prove or

refute that the second condition of QET2 holds for DAG
′, i.e.,

If M ⊆ N such that M |= DAG
′ and N |= DAG

′, then M is simply
closed in N .

Prove or refute that DAG
′ has quantifier elimination.
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(a) Define what it means for a theory T to be model complete.

(b) Show that if a theory has quantifier elimination, then it is model complete.

(c) Define what it means for a theory T ′ to be the model companion of T .

(d) Show that for every theory there is at most one model companion.

(e) Work in the language LFields of fields. Define the theory RCF of real closed fields and
the theory FRF of formally real fields and show that RCF is the model companion
of FRF.
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(a) Define the notion of quantifier rank and the notion of n-equivalence of models and
use them to precisely state the Ehrenfeucht-Fräıssé theorem including the definition
of the game Gn(M,N ).

(b) Consider the following game Gtimed(M,N ): player I starts by picking a natural
number n, and after this, the two players play the Ehrenfeucht-Fräıssé game
Gn(M,N ). Show that player II has a winning strategy in Gtimed(M,N ) if and
only if M and N are elementarily equivalent.

(c) Give an example of structures M and N such that player II has a winning strategy
in Gtimed(M,N ), but not in the infinite Ehrenfeucht-Fräıssé game Gω(M,N ).

(d) We consider the language LrG = {E, root} of rooted directed graphs and structures
G = (G,E, rG) and H = (H,F, rH ). A rooted directed graph is called connected if
every vertex can be reached by a finite path from the root. A relation Z ⊆ G×H is
called a bisimulation between G and H if (rG, rH) ∈ Z and the following conditions
hold:

“back” If (g, h) ∈ Z and there is some h′ ∈ H such that (h, h′) ∈ F , then there is
some g′ ∈ G with (g, g′) ∈ E and (g′, h′) ∈ Z.

“forth” If (g, h) ∈ Z and there is some g′ ∈ G such that (g, g′) ∈ E, then there is
some h′ ∈ H with (h, h′) ∈ E and (g′, h′) ∈ Z.

If there is a bisimulation between G and H we call the two rooted graphs bisimilar.
Give an example of rooted graphs that are bisimilar but not isomorphic.

(e) The bisimulation game Gbisim(G,H) is defined as follows: The game starts in
position (rG, rH). Each round starts in a position (v,w) ∈ G × H and consists
of two moves; first, player I chooses either v or w and then picks either some v′ ∈ G
such that (v, v′) ∈ E or some w′ ∈ H such that (w,w′) ∈ F ; after that, player II has
to play in the other graph and responds with some w′ ∈ H such that (w,w′) ∈ H or
v′ ∈ F such that (v, v′) ∈ E. If one of the two players cannot find such an element,
the game ends and the player who couldn’t move loses. Player II wins if he doesn’t
lose after any finite number of steps.

Prove that for any two connected rooted directed graphs G = (G,E, rG) and
H = (H,F, rH), player II has a winning strategy in Gbisim(G,H) if and only if
G and H are bisimilar.
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(a) Let M be a structure and A ⊆ M . Suppose that P is an A-type over M and that
Q ⊆ P is finite. Show that Q is realized in M.

(b) Let M be a structure and A ⊆ M . By SM
n (A) we denote the set of complete

n-A-types over M. Give a definition of the Stone topology on SM
n (A).

(c) State the Omitting Types Theorem (giving precise definitions of the terms occurring
in it).

(d) Let M be a structure and A ⊆ M . Prove that every isolated A-type over M is
realized in M.

(e) Give counterexamples (i.e., languages L, L-structures M, and sets A ⊆ M) to refute
the following assertions:

(i) For every A-type P over M there is a structure N ≡ M such that P is
realized in N by infinitely many elements.

(ii) Every A-type can be omitted in some N ≡ M.

(f) A model M |= T is called a prime model for T if for every model N |= T there is
an elementary embedding of M into N . Show that if M is a prime model for T ,
then for every x ∈ M , tpM

1
(x/∅) is isolated.
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