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For this question, if Z is a continuous local martingale then the notation

E(Z) = eZ−〈Z〉/2

denotes the corresponding exponential local martingale. You may use without proof the
fact that a positive local martingale is a supermartingale.

(a) Let X be a continuous local martingale with X0 = 0. For any p, q > 1, establish the
identity

E(X)p = E(√pqX)1/q
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q
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Hence, prove that

E
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for any finite stopping time T .

(b) Let X be a continuous local martingale such that Xt → X∞ almost surely. For any
r > 1, use the identity

E(X) = E(rX)
1
r2

(

e
r

r+1X
)

r2−1
r2

to prove the inequality

E [E(rX)∞] > (E [E(X)∞])r
2
(

E

[

erX∞/2
])−2(r−1)

.

For the rest of the question, letM be a continuous local martingale such thatM0 = 0
and Mt → M∞ almost surely. Suppose that

sup
T

E[eMT /2] < ∞

where the supremum is over all finite stopping times.

(c) Use part (a) to show that E(aM) is a uniformly integrable martingale for all 0 < a < 1.

[Hint: You may want to show that infp,q>1

√
pq(

√
pq−1)

(q−1) = 1
2 .]

(d) Show that E[eM∞/2] < ∞. Hence, use part (b) to show that E(M) is a uniformly
integrable martingale.
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Consider the stochastic differential equation

dXt = b(Xt)dt+ σ(Xt)dWt (*)

where W is a scalar Brownian motion and b and σ are given function on R.

(a) What is does it mean to say that equation (*) has a weak solution? a strong solution?

(b) What does it mean to say the equation has the uniqueness in law property? the
pathwise uniqueness property?

For the rest of the question, specialise to the case where σ(x) = 1 for all x and b is
continuous and bounded.

(c) Let X be a solution of (*). Show that there exists a strictly increasing function g such
that Y = g(X) is a local martingale.

(d) Verify the function g found in part (c) is such that the function h = g′ ◦ g−1 is
Lipschitz. Hence, prove that equation (*) has a pathwise unique strong solution. You may
use without proof Itô’s formula and any standard results on the existence and uniqueness
of the solutions of stochastic differential equations as long as they are carefully stated.

3

(a) What does it mean to say that (Xt)t>0 is a Brownian motion in a filtration (Ft)t>0?

(b) Show that if X is a continuous adapted process such that X0 = 0 and

E[eiθ(Xt−Xs)|Fs] = e−θ2(t−s)/2

for all real θ and 0 6 s 6 t, where i =
√
−1, then X is a Browian motion in the filtration.

(c) State and prove Lévy’s characterisation of Brownian motion in the scalar case. You
may use standard results from stochastic calculus, such as Itô’s formula, without proof.

(d) Let M be a continuous local martingale such that

〈M〉t =
∫ t

0
Ksds

where K is a continuous, positive adapted process. Show that there exists a continuous
adapted process H and a Brownian motion W such that

Mt = M0 +

∫ t

0
HsdWs

for all t > 0.
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Suppose thatX is a continuous semimartingale. Show that there exists a continuous,
non-decreasing adapted process R such that

〈X〉(n) → R uniformly on compacts in probability.

where

〈X〉(n)t =

∞
∑

k=1

(Xt∧tn
k
−Xt∧tn

k−1
)2

where tnk = k2−n. You may use the following fact without proof: if X is a uniformly
bounded continuous martingale, then there exists an adapted process R such that

〈X〉(n) → R uniformly in probability.

5

Let

Xt = e−Wt+t/2

(

x−
∫ t

0
eWs−s/2dBs

)

where W and B are independent Brownian motions and x is a real constant. Let
Θ = tan−1(X).

(a) Show that there exists a Brownian motion Z such that

dΘ = cos(Θ)dZ.

(b) Hence, show that

P(Xt → ∞) =
1

2
+

1

π
tan−1(x).

(c) Show that the stochastic integral
∫∞
0 eWs−s/2dBs is well-defined and has the Cauchy

distribution.

You may use standard results of stochastic calculus, such as Itô’s formula, without
proof.
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(a) Suppose there are functions ki : R+ → R such that

K(s, t) =
∞
∑

i=1

ki(s)ki(t),

where the sum converges absolutely for all (s, t). Show that there exists a Gaussian process
(Xt)t>0 with E(Xt) = 0 and E(XsXt) = K(s, t).

(b) In the notation of part (a), find K(s, t) in the case where

ki(t) =

∫ t

0
hi(u) du

and the sequence of functions (hi)i is an orthonormal basis of the L2 space of functions
on R+ which are square-integrable with respect to Lebesgue measure.

(c) Suppose X is a continuous Gaussian process such that E(Xt) = 0 and E(XsXt) = s

for all 0 6 s 6 t. Show that X is a Brownian motion.

(d) Let W be a Brownian motion. Show that there is a c 6= 0 such that the continuous
Gaussian process Ŵ defined by

Ŵt = Wt −
c

t

∫ t

0
Wsds

is a Brownian motion.
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