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1

Let X ∈ R
n×p be a matrix of predictors and Y an n-vector of responses. Assume

that the columns of X have been centred and scaled and that Y has been centred.

Define the Lasso estimator β̂L
λ with tuning parameter λ > 0 in this context. Write

out the KKT conditions for β̂L
λ .

Now write out the steps of the Least Angle Regression (LAR) algorithm for
regressing Y on X where the initial active set A1 = ∅, λ0 = ∞, and λ1, λ2, . . . are
successive values of λhit where the active sets then change to A2, A3, . . .. You may assume
that the variable to enter the active set at λhit is always uniquely determined. Let β̂ be
the solution path produced by the LAR algorithm. Prove that for m > 2,

1

n
|XT

k {Y −Xβ̂(λ)}| = λ for k ∈ Am, λ ∈ [λm, λm−1],

with λm taken as 0 in the above if m is the final step of the algorithm.

Now assume that the Lasso solution is unique at every λ > 0. Show that if for
m > 2,

sign(XT
k {Y −Xβ̂(λ)}) = sign(β̂k(λ)) for k ∈ Am, λ ∈ [λm, λm−1],

again with λm = 0 in the above if m is the final step of the algorithm, then the Lasso
solution path and the LAR path coincide so β̂(λ) = β̂L

λ for λ > 0.
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Let Y ∈ R
n be a vector of responses and X ∈ R

n×p a matrix of predictors with
rank(X) = p. Suppose that the columns of X have been centred and scaled, and that Y
is also centred. Consider the linear model (after centring),

Y = Xβ0 + ε− ε̄1,

where Var(ε) = σ2I (σ2 > 0), 1 is an n-vector of 1’s and ε̄ = 1T ε/n. Write down a formula
for the ordinary least squares estimator β̂OLS of β0.

Write down a formula for the ridge regression estimator β̂R
λ of β0 when the tuning

parameter is λ > 0.

Prove that there exists a λ > 0 depending on β0 and σ2, such that for all x∗ ∈ R
p

with ‖x∗‖2 = 1, we have

E{(x∗T β̂R
λ − x∗Tβ0)2} < E{(x∗T β̂OLS − x∗Tβ0)2}.

Finally show that for any fixed λ > 0 and fixed δ > 0, there exist x∗ ∈ R
p with

‖x∗‖2 = 1 and β0 ∈ R
p such that

E{(x∗T β̂R
λ − x∗Tβ0)2} > E{(x∗T β̂OLS − x∗Tβ0)2}+ δ.

3

Suppose we have null hypotheses H1, . . . ,Hm and associated p-values p1, . . . , pm.
Let I0 be the set of indices corresponding to true null hypotheses so that Hi : i ∈ I0
are the true null hypotheses. What is the family-wise error rate (FWER)? Describe the
Bonferroni correction and prove that it can be used to control the FWER at a desired
level α.

What is an intersection hypothesis? What is the closure of the family H1, . . . ,Hm

of hypotheses? Describe the closed testing procedure, introducing any other tests that are
needed in order for it to work. Prove that the closed testing procedure can control the
FWER at level α.

Now consider a family of intersection hypotheses HI : I ∈ I that is hierarchical in
the sense that for any I, J ∈ I, we either have I ∩ J = ∅ or I ⊆ J or J ⊆ I. Suppose that
for each HI , I ∈ I we have a p-value pI . Define the adjusted p-value of HI to be

padjI = max
J :J∈I, J⊇I

m

|J |
pJ .

Consider the procedure that rejects all hypotheses HI for which padjI 6 α. Show that with
probability at least 1− α, this procedure makes no false rejections.
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Let n, p be integers greater than 1, and let k ∈ {1, . . . , p}. In this question, we
use the following notation. For a vector z ∈ R

p, z−k ∈ R
p−1 is the vector z with its kth

component removed. For a matrix X ∈ R
n×p, Xk is its kth column and X−k ∈ R

n×(p−1)

is X with its kth column removed. Furthermore, for a matrix A ∈ R
p×p, we will write

A−k,k ∈ R
p−1 for the kth column of A with its kth component Akk removed. We will

denote an n-vector of 1’s by 1.

Let Z ∼ Np(µ,Σ) with Σ positive definite. Explain what is meant by a conditional
independence graph for this distribution. [You need not explain what a graph is.]

Let z ∈ R
p. Derive the distribution of Zk|Z−k = z−k.

Suppose we have data x1, . . . , xn forming the rows of a matrix X ∈ R
n×p, which we

can model as realisations of independent Np(µ,Σ) random vectors. Motivate and explain
the procedure of nodewise regression for estimating the conditional independence graph
based on this data.

Now consider the following objective function over µ1, . . . , µp ∈ R and Θ ∈ R
p×p,

where we constrain Θkk = 0 for k = 1, . . . , p:

1

2n

p
∑

k=1

‖Xk − µk1−X−kΘ−k,k‖
2
2 + λ

∑

j<k

√

Θ2
jk +Θ2

kj. (1)

Explain how the minimiser of this objective can be used to estimate the conditional
independence graph, discussing and motivating the form of the penalty function being
used.
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