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SECTION A

1

Suppose that Y = (Y1, . . . , Yn)
T satisfies Y = Xβ + ε, where X is a known

n × p matrix (p < n), β = (β1, . . . , βp)
T is unknown, ε = (ε1, . . . , εn)

T where ε1, . . . , εn
are independent normally distributed random variables with mean zero and variance σ2

(unknown), and where T denotes the transpose. Assume that XTX is invertible. Find β̂

that minimises R(β) = (Y −Xβ)T (Y −Xβ). Define the fitted values Ŷ and show that
Ŷ = HY for some suitable matrix H (which you should specify in terms of X) satisfying
HT = H and HH = H. Define the residuals ε̂ and show that ε̂T ε̂ = YTGY for some
matrix G satisfying GT = G and GG = G. Find cov(ε̂, Ŷ).

An investigation is carried out into the use of a windmill to generate electricity.
There are 25 observations of the electrical output together with the corresponding values
of the wind velocity. In the (edited) R output below, the electrical outputs and wind
velocities are in output and velocity, respectively. Figure 1 shows a plot of the data and
various residual plots. For these plots, res1, res2 and res3 contain the residuals from
models wind1.lm, wind2.lm and wind3.lm, respectively. The corresponding fitted values
are in fit1, fit2 and fit3.

Write down the algebraic form of the model fitted in wind1.lm. Several numerical
values in the output to the directive anova(wind1.lm) have been replaced by asterisks.
Write down what these numerical values should be. Explain how the value of Multiple
R-squared is calculated.

With reference to the plots, explain why the model wind2.lm is fitted to the data.
Write down the algebraic form of the model fitted in wind2.lm. What hypothesis is being
tested in the line marked (A) in the output? Carry out this test in detail, and give your
conclusion.

Compare the models wind2.lm and wind3.lm. What further information or plots
would help you to compare the adequacy of these two models?

> wind1.lm <- lm(output~velocity)

> anova(wind1.lm)

Df Sum Sq Mean Sq F value Pr(>F)

velocity * 8.9296 * 160.26 7.546e-12

Residuals * 1.2816 0.0557

> summary(wind1.lm)

<output omitted>

Multiple R-squared: 0.8745

> velocity2 <- velocity*velocity

> wind2.lm <- lm(output~velocity+velocity2)

Part III, Paper 33



3

> summary(wind2.lm)

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.155898 0.174650 -6.618 1.18e-06

velocity 0.722936 0.061425 11.769 5.77e-11

velocity2 -0.038121 0.004797 -7.947 6.59e-08 (A)

Residual standard error: 0.1227 on 22 degrees of freedom

Multiple R-squared: 0.9676

F-statistic: 328.3 on 2 and 22 DF, p-value: < 2.2e-16

> velocity3 <- 1/velocity

> wind3.lm <- lm(output~velocity3)

> summary(wind3.lm)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.9789 0.0449 66.34 <2e-16

velocity3 -6.9345 0.2064 -33.59 <2e-16

Residual standard error: 0.09417 on 23 degrees of freedom

Multiple R-squared: 0.98

F-statistic: 1128 on 1 and 23 DF, p-value: < 2.2e-16

Figure 1: Plot of the data and various residual plots
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2

A scientist carried out an experiment to investigate the effects of age and different
processing methods on the recall of a list of words. There were fifty subjects in each of two
age groups (Younger and Older). The subjects were randomly assigned to five processing
groups, labelled A, B, C, D and E, in such a way that there were ten of each age group in
each processing group. Each processing group was asked to process the words in a different
way, then each subject was asked to write down as many words as they could remember,
and the number of words correctly recalled was recorded for each subject. The first two
and the last two lines of the data are shown below:

Age Process Words

1 Younger A 14

2 Younger A 11

<lines omitted>

99 Older E 9

100 Older E 6

The left-hand number is the subject number, Age is a factor with two levels Younger

(between the ages of 18 and 30) and Older (between the ages of 55 and 65), Process is
a factor with five levels A, B, C, D and E. The (edited) R output below refers to statistical
analysis of the above data. The default constraints in R are used.

For the model memory1.lm, write down the algebraic form of the model, defining
your notation and writing down all assumptions. For this model, find the estimated mean
number of words correctly recalled by an older subject in group A and explain how to
obtain a 95% confidence interval for this estimate.

Write down the algebraic form of the model fitted in memory2.lm. Carry out
a statistical test to determine which of the two models is preferable, stating the null
hypothesis, the test statistic, the null distribution of the test statistic, and whether
or not the null hypothesis should be rejected. Explain the output to the directive
summary(memory2.lm) in detail, and describe the effects of age and processing method on
the correct recall of words.

The scientist later tells the statistician that groups A and C are in fact using methods
of type I, groups B and E are using methods of type II, and group D is using a method
of type III. Explain how to test whether this reduced number of categories of processing
method is adequate.

Part III, Paper 33



5

> memory1.lm <- lm(Words~Age + Process)

> summary(memory1.lm)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 11.3500 0.7632 14.871 < 2e-16

AgeYounger 3.1000 0.6232 4.975 2.94e-06

ProcessB -6.1500 0.9853 -6.242 1.24e-08

ProcessC 2.6000 0.9853 2.639 0.00974

ProcessD 2.7500 0.9853 2.791 0.00636

ProcessE -5.6500 0.9853 -5.734 1.18e-07

> memory2.lm <- lm(Words ~ Age*Process)

> anova(memory2.lm)

Df Sum Sq Mean Sq F value Pr(>F)

Age 1 240.25 240.25 29.9356 3.981e-07

Process 4 1514.94 378.74 47.1911 < 2.2e-16

Age:Process 4 190.30 47.58 5.9279 0.0002793

Residuals 90 722.30 8.03

> summary(memory2.lm)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 11.0000 0.8959 12.279 < 2e-16

AgeYounger 3.8000 1.2669 2.999 0.00350

ProcessB -4.0000 1.2669 -3.157 0.00217

ProcessC 2.4000 1.2669 1.894 0.06139

ProcessD 1.0000 1.2669 0.789 0.43201

ProcessE -4.1000 1.2669 -3.236 0.00170

AgeYounger:ProcessB -4.3000 1.7917 -2.400 0.01846

AgeYounger:ProcessC 0.4000 1.7917 0.223 0.82385

AgeYounger:ProcessD 3.5000 1.7917 1.953 0.05387

AgeYounger:ProcessE -3.1000 1.7917 -1.730 0.08702

Residual standard error: 2.833 on 90 degrees of freedom

Multiple R-squared: 0.7293

F-statistic: 26.93 on 9 and 90 DF, p-value: < 2.2e-16
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3

(a) Let Y be a Poisson random variable with density function

f(k;λ) =
λke−λ

k!
; k = 0, 1, 2, . . . ,+∞.

Show that Y belongs to an exponential dispersion family with respect to the
unknown parameter λ. Identify the natural parameter and the dispersion parameter.
Use the results about the mean and variance of the exponential dispersion family
to compute E[Y ] and V ar(Y ).

(b) A company is responsible for the maintenance of plumbing systems in a small town.
The company is interested in exploring if the monthly number of maintenance works
(monthly_works) is related to the average temperature (avg_temperature) and
precipitation (avg_precipitation) during the month. A Poisson regression model
is fitted to analyze the relationship. The R code for the analysis and its output are
given below.

Write down the algebraic form of the model fitted with the glm command and the
estimates for the parameters of the model. Using the information in the summary,
deduce the number of months in which data have been collected, i.e. the number of
observations in the dataset.

Is the model a good fit for the data? Why?

Consider the output of the anova command. What do you conclude about which
variables should be considered in the prediction of the number of maintenance
works?

> model<-glm(monthly_works ~ avg_temperature+avg_precipitations,

family=poisson)

> summary(monthly_works)

Min. 1st Qu. Median Mean 3rd Qu. Max.

39.00 49.75 54.00 52.71 57.25 71.00

> summary(model)

Call: glm(formula = monthly_works ~ avg_temperature +

avg_precipitations,

family = poisson)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.9268 -0.7649 -0.1740 0.5438 1.8069

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.079374 0.085628 47.641 < 2e-16 ***
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avg_temperature -0.006162 0.001844 -3.342 0.000833 ***

avg_precipitations -0.002922 0.005988 -0.488 0.625582

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 37.969 on 23 degrees of freedom

Residual deviance: 23.527 on 21 degrees of freedom

AIC: 169.2

Number of Fisher Scoring iterations: 4

> 1-pchisq(37.969,23)

[1] 0.02566753

> 1-pchisq(23.527,21)

[1] 0.3165361

> anova(model,test="Chisq")

Analysis of Deviance Table

Model: poisson, link: log

Response: monthly_works

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL 23 37.969

avg_temperature 1 14.204 22 23.765 0.000164 ***

avg_precipitations 1 0.238 21 23.527 0.625677

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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4

We are interested in investigating how a response variable Y is related to 6 predictor
variables X1, . . . ,X6. The predictor variables have been centered and scaled prior to the
analysis. Given that some of the predictor variables are highly correlated, a regularized
linear model is considered. We define a matrix X whose columns contain prediction
variables X1, . . . ,X6. A ridge regression is performed using the following R code.

> library(MASS)

> lambda = seq(0,10,1)

> model.ridge <- lm.ridge(Y ~ X,lambda=lambda)

(a) Write down the optimization problem whose solution provides the ridge regression
estimator for the parameter vector β and specify the analytical expression of the
solution as a function of λ and X.

(b) Looking at Figure 1, choose and justify an appropriate value for the parameter λ and
report the corresponding estimates for the regression coefficients.
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Figure 1: Top: Generalized cross-validation error as function of λ. Bottom: Table of the
ridge trace for the selected values of λ.

A more interpretable model can be obtained using the LASSO, which allows one to select
the relevant predictor variables.
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>library(lars)

>model.lasso<-lars(X,Y,type="lasso")

>plot(model.lasso)

The plot of the LASSO coefficients can be found in Figure 2.
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Figure 2: Top: Plot of the lasso coefficients as function of the fraction of the maximum
l1 norm. Bottom: Table of the estimates of the coefficients at each step of the lasso
algorithm, corresponding to the vertical lines numbered from 0 to 6 on the plot in the top
panel.

(c) Write down the optimization problem whose solution provides the LASSO estimator
for the parameter vector β.

(d) The fraction of the maximum l1 norm of the coefficients which minimizes the 10-
fold cross-validation error is 0.8. Looking at Figure 2, which predictors should be
included in the model?
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SECTION B

5

(a) Let T be a positive continuous survival time random variable, with probability density
function f(t), survivor function S(t), and hazard function h(t), at t > 0. Denote the
cumulative hazard function by H(t) =

∫ t

0
h(u)du. Derive

(i) an expression for the mean of T , µT , in terms of S(t);

(ii) an expression for S(t) in terms of H(t); and

(iii) the distribution of the random variable H(T ).

(b) In a study investigating the time in minutes to complete a particular computer task, one
hundred adults aged 21 years old and over were randomly assigned to either perform the
task in a controlled environment where Handel’s Messiah oratorio was being played or in
the same controlled environment but where Elgar’s The Kingdom was played instead. The
data collected are in the form (Ti,Di), where Ti represents either the time to completion
of the task, if observed, or the time to giving up on the task for the ith individual, and
is recorded in the variable comptime within the data-set, task.dat. Di takes the value
0 or 1 depending on whether the task was uncompleted (status= 0) or observed to be
completed (status= 1). Also recorded in the data-set task.dat are the variables group
(coded 0 for The Kingdom and 1 for Messiah), age (the age of the subject in years) and
gender (coded 0 for female and 1 for male).

The Researchers responsible for analysing the data decide that it is appropriate to use
survival analysis techniques. They begin by producing an overall Kaplan-Meier curve to
describe the completion time data. They then proceed to fit a Cox proportional hazards
model and conduct diagnostics. The plots, R code and edited R output from their analyses
are displayed on the subsequent pages.

(i) From the overall Kaplan-Meier estimator of the survivor function for time to
completion, work out the appropriate estimates for the median and mean completion
times. What would be the impact on these estimates if the last observed completion
time of 18 minutes was actually a censored observation, whilst all the other data
remain the same?

(ii) Interpret the output from the model task.coxph in the context of the study.

(iii) Explain why the Researchers have run the R command cox.zph(task.coxph) and
produced the diagnostic plot shown. What can be concluded about the Cox model
fitted?
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> task.surv <- survfit(Surv(comptime,status)~1,data=task.dat)

> plot(task.surv,conf.int=F,xlab="Time to task completion in minutes", ylab=

"Proportion not completing the task", main="Kaplan-Meier Survivor Function")

> summary(task.surv)

Call: survfit(formula = Surv(comptime, status) ~ 1, data = task.dat)

time n.risk n.event survival std.err lower 95% CI upper 95% CI

1 100 23 0.7700 0.0421 0.69178 0.8571

2 75 19 0.5749 0.0498 0.48512 0.6814

3 55 14 0.4286 0.0502 0.34067 0.5392

4 40 9 0.3322 0.0481 0.25007 0.4412

5 31 8 0.2464 0.0442 0.17337 0.3503

6 23 3 0.2143 0.0422 0.14572 0.3151

7 20 4 0.1714 0.0388 0.11002 0.2671

8 16 4 0.1286 0.0345 0.07598 0.2176

9 12 3 0.0964 0.0305 0.05191 0.1791

10 9 2 0.0750 0.0272 0.03684 0.1527

11 7 2 0.0536 0.0233 0.02286 0.1255

12 5 3 0.0214 0.0150 0.00544 0.0843

15 2 1 0.0107 0.0107 0.00153 0.0752

18 1 1 0.0000 NaN NA NA
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> task.coxph <- coxph(Surv(comptime,status)~age+gender+group,data=task.dat,

method="breslow")

> summary(task.coxph)

Call:

coxph(formula = Surv(comptime, status) ~ age + gender + group,

data = task.dat, method = "breslow")

n= 100, number of events= 96

coef exp(coef) se(coef) z Pr(>|z|)

age 0.006536 1.006558 0.010261 0.637 0.524136

gender -0.603547 0.546868 0.219039 -2.755 0.005861

group 0.755308 2.128266 0.226498 3.335 0.000854

---

exp(coef) exp(-coef) lower .95 upper .95

age 1.0066 0.9935 0.9865 1.0270

gender 0.5469 1.8286 0.3560 0.8401

group 2.1283 0.4699 1.3653 3.3176

> cox.zph(task.coxph)

rho chisq p

age 0.0718 0.5429 0.461

gender 0.0622 0.3791 0.538

group 0.0153 0.0221 0.882

GLOBAL NA 0.8135 0.846

> task.survph <- survfit(task.coxph)

> summary(task.survph) # Baseline Survivor Function Table

Call: survfit(formula = task.coxph)

time n.risk n.event survival std.err lower 95% CI upper 95% CI

1 100 23 0.812584 0.03617 7.45e-01 0.8867

2 75 19 0.632534 0.04674 5.47e-01 0.7311

3 55 14 0.491275 0.04991 4.03e-01 0.5995

4 40 9 0.388888 0.05006 3.02e-01 0.5005

5 31 8 0.290836 0.04786 2.11e-01 0.4015

6 23 3 0.246232 0.04676 1.70e-01 0.3573

7 20 4 0.190023 0.04367 1.21e-01 0.2982

8 16 4 0.138653 0.03879 8.01e-02 0.2399

9 12 3 0.100551 0.03389 5.19e-02 0.1947

10 9 2 0.074829 0.02976 3.43e-02 0.1632

11 7 2 0.048641 0.02456 1.81e-02 0.1308

12 5 3 0.018487 0.01423 4.09e-03 0.0836

15 2 1 0.006598 0.00879 4.85e-04 0.0898

18 1 1 0.000794 0.00209 4.58e-06 0.1377
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> round(task.survph$surv,4)

[1] 0.8126 0.6325 0.4913 0.3889 0.2908 0.2462 0.1900 0.1387 0.1006 0.0748

[11] 0.0486 0.0185 0.0066 0.0008

> H0.hat <- -log(task.survph$surv)

> round(H0.hat,4)

[1] 0.2075 0.4580 0.7108 0.9445 1.2350 1.4015 1.6606 1.9758 2.2971 2.5925

[11] 3.0233 3.9907 5.0210 7.1385

> task.survph$time

[1] 1 2 3 4 5 6 7 8 9 10 11 12 15 18

>

> task.coxph$y

[1] 2 1 1 8 1 3 1 4 3 2 8 1 2 1+ 8 1 3 1

[19] 5 1 1+ 1 1 4 7 3 3 2+ 3+ 2 12 6 9 3 6 4

[37] 3 1 1 2 1 3 2 3 2 4 6 10 11 5 4 12 5 3

[55] 4 1 1 11 1 1 4 5 2 2 3 4 2 1 15 8 4 18

[73] 3 5 5 3 2 5 10 1 1 7 1 2 9 2 2 2 1 2

[91] 7 7 2 5 2 2 1 9 12 3

> position <- match(task.coxph$y[,1],task.survph$time)

> position

[1] 2 1 1 8 1 3 1 4 3 2 8 1 2 1 8 1 3 1 5 1 1 1 1 4 7

[26] 3 3 2 3 2 12 6 9 3 6 4 3 1 1 2 1 3 2 3 2 4 6 10 11 5

[51] 4 12 5 3 4 1 1 11 1 1 4 5 2 2 3 4 2 1 13 8 4 14 3 5 5

[76] 3 2 5 10 1 1 7 1 2 9 2 2 2 1 2 7 7 2 5 2 2 1 9 12 3

> H.hat <- H0.hat[position]*exp(task.coxph$linear.predictor)

>

> qqplot(rexp(100),H.hat,main="Diagnostic Plot")

> abline(a=0,b=1)
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6

(a) Let y1, . . . , yn be realisations of n independent random variables from a finite normal
mixture distribution with k components and k Gaussian densities where the means are
different but the variances are equal. Explain how an E-M algorithm can be used to
obtain the maximum likelihood estimates of the unknown parameters (i.e. the mixture
probabilities, the means and the variance). Explicit expressions for the parameter updates
in the M-step of the algorithm to compute the maximum likelihood estimates are required.

(b) A Research Nurse collects data on body mass index (defined as the ratio of weight
in kg to height squared in m2), age and gender from 500 patients in a GP practice. He
is interested in determining whether patients, after taking account of their age (in years)
and gender, can be clustered into different groups based on their body mass index (bmi).
He realises that he does not know how he should go about addressing this problem and
therefore approaches a member of staff at the Statistical Laboratory, who has many years
of experience in applied research, with the anonymised data collected, bmi.dat. The
Statistician begins by fitting a linear regression model, bmi.lm, to bmi adjusting for age
and gender. After examining the results produced from this linear model and performing
diagnostic checks using plot(bmi.lm), the Statistician decides to examine the residuals
further.

By looking at the provided R code, edited R output and plots from the Statistician’s
analysis, discuss what was done by the Statistician. You need to give sensible explanations
for the analysis strategy adopted by the Statistician, including whether the underlying
assumptions being made are justifiable. (Detailed derivations of the underlying
techniques are not required.)

(c) Which of the three models used for analysing the residuals best fit these data? You
need to justify your answer.
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> bmi.lm <- lm(bmi~age+gender,data=bmi.dat)

> summary(bmi.lm)

Call:

lm(formula = bmi ~ age + gender, data = bmi.dat)

Residuals:

Min 1Q Median 3Q Max

-6.9939 -1.8781 0.1901 2.0450 6.7899

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 27.01675 0.52180 51.776 < 2e-16 ***

age -0.10483 0.01232 -8.506 < 2e-16 ***

gender 1.47031 0.24186 6.079 2.41e-09 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 2.704 on 497 degrees of freedom

Multiple R-squared: 0.18,Adjusted R-squared: 0.1767

F-statistic: 54.53 on 2 and 497 DF, p-value: < 2.2e-16
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> par(mfrow=c(2,2))

> plot(bmi.lm) # command to produce the residual plots

> bmi.resid <- residuals(bmi.lm)

> summary(lm(bmi.resid~1))

Call:

lm(formula = bmi.resid ~ 1)

Residuals:

Min 1Q Median 3Q Max

-6.9939 -1.8781 0.1901 2.0450 6.7899

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.986e-17 1.207e-01 0 1

Residual standard error: 2.698 on 499 degrees of freedom

> logLik(lm(bmi.resid~1))

’log Lik.’ -1205.25 (df=2)

> library(MASS)

> par(mfrow=c(1,2))

> truehist(bmi.resid,20,xlim=c(-10,10),ymax=0.2,col=0,main="Histogram of Residuals")

# E-M algorithm for Mixture of Normals with equal variances

> EM.Normeqvar(bmi.resid,pi=c(0.3,0.7),mu=c(-2,2),sigma2=3,iterations=100)

[1] "pi1" "pi2" "mu1" "mu2" "sigma2" "log-likelihood"

[1] 0.4007 0.5992 -2.4642 1.6477 3.2052 -1195.4134

[1] 0.3916 0.6084 -2.4932 1.6046 3.2649 -1194.9732

.

.

.

[1] 0.3317 0.6683 -2.7844 1.3819 3.4175 -1193.8265

[1] 0.3317 0.6683 -2.7844 1.3819 3.4175 -1193.8265

> EM.Normeqvar(bmi.resid,pi=c(0.2,0.4,0.4),mu=c(-3.7,-0.45,2.3),sigma2=2,iterations=100)

[1] "pi1" "pi2" "pi3" "mu1" "mu2" "mu3" "sigma2" "log-likelihood"

[1] 0.2050 0.3922 0.4029 -3.7564 -0.4556 2.3546 2.0585 -1192.3087

[1] 0.2044 0.3934 0.4022 -3.7545 -0.4559 2.3541 2.0729 -1192.2953

.

.

.

[1] 0.2051 0.3926 0.4023 -3.7306 -0.4417 2.3329 2.1448 -1192.2715

[1] 0.2051 0.3926 0.4023 -3.7306 -0.4417 2.3329 2.1448 -1192.2715

> x <- seq(-10,10,0.2)
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> mixdens2 <- 0.3317*dnorm(x,-2.7844,sqrt(3.4175))+0.6683*dnorm(x,1.3819,sqrt(3.4175))

> mixdens3 <- 0.2051*dnorm(x,-3.7306,sqrt(2.1448))+0.3926*dnorm(x,-0.4417,sqrt(2.1448))

+0.4023*dnorm(x,2.3329,sqrt(2.1448))

> bmi.mix2 <- list(x=x,y=mixdens2)

> bmi.mix3 <- list(x=x,y=mixdens3)

> truehist(bmi.resid,20,xlim=c(-10,10),ymax=0.2,col=0)

> lines(bmi.mix2,col=2,lty=2)

> lines(bmi.mix3,col=4,lty=3)

> legend(3.5,0.2,c("Norm mix 2", "Norm mix 3"),

lty=c(1,2),col=c(1,2))

END OF PAPER
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