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1

Let R be an arbitrary unital ring.

Let E(C,A) be the set of short exact sequences 0 → A → B → C → 0 of left R-
modules up to equivalence. Prove that there is a bijective correspondence between E(C,A)
and Ext1R(C,A).

Let Z be the trivial module for the abelian group Z. Classify, up to equivalence, all
short exact sequences of the form

0 → Z → B → Z⊕ Z → 0.

2

Let R be an arbitrary unital ring. Define the Koszul complex K(t) of a sequence
t = (t1, . . . , tn) of central elements of R.

Let M be a left R-module. Define what it means for a sequence to be regular on M .
Show that if t is regular on M then K(t)⊗R M is quasi-isomorphic to M/(t1, . . . , tn)M .
You should state carefully any results that you use.

Consider the ring Z[X] and its modules Z/pZ and Z/qZ on which X acts trivially.
(Here p, q > 2.) Compute Ext∗

Z[X](Z/pZ,Z/qZ) in the cases where (i) p = q and (ii) p and
q are coprime.

3 Define what it means to say a spectral sequence converges to a graded object H∗.

Let R be an arbitrary unital ring, let C be a cochain complex of left R-modules and
let F be a bounded filtration on C. State a theorem about the convergence of the spectral
sequence associated to the filtered complex (C,F ).

Describe how to deduce that there are two spectral sequences computing the
cohomology of a double complex that is bounded in both degrees.

Let P be a bounded cochain complex of projective left R-modules and let M be any
left R-module with finite projective dimension. By considering the two spectral sequences
associated to a suitable double complex prove the following Künneth spectral sequence:

Epq
2 = Tor−p(H

qP,M) ⇒ Hp+q(P ⊗M)

Assume now that all boundaries of the complex P∗ are also projective. Show the
spectral sequence degenerates at theE2 term.

Part III, Paper 4



3

4

Define the the weak equivalences, fibrations and cofibrations that form the projective
model structure on the categoryCh>0(R) of nonnegative chain complexes over an arbitrary
unital ring R.

Define what is meant by a sequentially small object. Use the small object argument
to show that any map a : X // Y in this category factors as a cofibration followed by
an acyclic fibration.

Hint: You may assume that acyclic fibrations are characterized by the right lifting
property with respect to a certain set of cofibrations that you should specify. You may
further assume the domains of these maps are sequentially small.
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