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1

Consider a two asset market model whose prices have dynamics

dBt = Btr dt

dSt = St(µ dt+ σ dWt)

where r, µ, σ are positive constants and W is a Brownian motion. Consider a perpetual
American claim with payout g(St), where g is a given non-negative function. Suppose
there is a non-negative function V which satisfies the non-linear differential equation

max

{

1

2
σ2S2V ′′(S) + rSV ′(S)− rV (S), g(S) − V (S)

}

= 0 for S > 0. (∗)

(a) Show that if the initial wealth is at least V (S0), then there is an admissible self-
financing strategy (φ, π) such that φtBt + πtSt > g(St) almost surely for all t > 0.

(b) Now suppose that 2r/σ2 < 1 and g(S) = 1
1+S

for all S > 0. Find, with verification, a
solution to equation (∗) and hence an optimal exercise policy of this claim.

2

Let p be a given vector in R
n, and let P be a bounded R

n-valued random vector.
Suppose that the following condition holds: if H ∈ R

n is such that H · p = 0 = H · P
almost surely, then H = 0.

(a) Show that the following statements are equivalent:

1. There exists a positive bounded random variable Y such that E(PY ) = p.

2. If H ∈ R
n is such that H · p 6 0 6 H · P almost surely, then H = 0.

If you use any result from the course, you must prove it.

Now suppose that the equivalent statements (1) and (2) hold. Also suppose n = 3
and that p = (b, s, c) and P = (B,S,C) where B and S are bounded, non-negative random
variables and C = (S −B)+.

(b) Show that
(s− b)+ 6 c 6 s.

Furthermore, show that if 0 < P(S > B) 6 P(S > B) < 1 then (s− b)+ < c.
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Consider a discrete-time, arbitrage-free, n-asset market model with prices (Pt)t>0

adapted to a filtration (Ft)t>0, where F0 is trivial.

(a) What does it mean to say the market is complete?

Suppose that the market is complete.

(b) Fix t > 0 and let A1, . . . , Ak be disjoint Ft-measurable events of positive probability.
Show that k 6 nt.

(c) Let Vt = E(PtP
⊤
t |Ft−1) where P⊤

t denotes the transpose of the column vector Pt.
Suppose that the n×n random matrix Vt is positive definite almost surely for each t > 1,
and let

Zt = P⊤

t V
−1
t Pt−1.

Show that Zt > 0 almost surely for each t > 1. [Hint: You may wish to show that
the process Yt = Z1 · · ·Zt defines a martingale deflator. You may use without proof the first
fundamental theorem of asset pricing if stated clearly. ]
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Consider a two-asset market with cash Bt = 1 for all t > 0 and a stock with price
dynamics

dSt = StσtdWt

where (Wt)t>0 is a Brownian motion and (σt)t>0 is a bounded and continuous process
adapted to filtration (Ft)t>0.

(a) Show that the process (
√
St)t>0 is a supermartingale.

(b) If the process σ is independent of W , show that

E(
√

ST |Ft) =
√

Ste
−k

∫
T

t
σ2
udu

for a constant k which you should determine.

Let (ft(T ))06t6T be a continuous random field which evolves as

dft(T ) = At(T )dt+Bt(T )dWt

where (At(T ))06t6T and (Bt(T ))06t6T are bounded, continuous and suitably measurable
random fields such that the stochastic integral is well-defined for all T > 0.

(c) If

E(
√

ST |Ft) =
√

Ste
−

∫
T

t
ft(u)du

for all 0 6 t 6 T , show that

At(T ) = Bt(T )

(
∫ T

t

Bt(u)du − 1

2
σt

)

and
ft(t) = k σ2t .

[You may use the stochastic Fubini theorem without justification.]
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Consider a two-asset discrete-time market with a bond with price Bt = 1 for all
t > 0 and a stock with price (St)t>0.

(a) Consider a contingent claim with time-T payout

T
∑

u=1

Su.

Find a trading strategy that replicates this claim.

Now suppose the random variable ST takes values in the finite set {0, 1, . . . , N}.
Suppose the market has a family of N European call options each with maturity T and
with strikes K ∈ {1, . . . , N}.
(b) Show that the claim with time-T payout S2

T can be replicated by trading in the stock
and the family of call options.

(c) Consider a contingent claim with time-T payout

T
∑

t=1

(St − St−1)
2.

Show that the claim can be replicated by trading in the bond, the stock and the family of
call options. Show that the initial cost of the replication strategy is

2

N
∑

K=1

C0(K) + S0(1− S0)

where C0(K) is the time-0 price of the call of strike K.
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Consider a two asset market model with price dynamics

dBt = Btr dt

dSt = St(r dt+ σ(t, St)dWt)

where r is a positive constant, the process W is a Brownian motion generating the
filtration, and the positive, smooth function σ is bounded from above and below. To
this market, introduce a European call option with strike K and maturity T . Let

E[e−rT (ST −K)+] = C(T,K).

(a) Show that there exists a self-financing admissible strategy which replicates the
payout of the call. Show that the minimal cost of replication is C(T,K). [You may use
without proof standard results of stochastic calculus if stated clearly.]

(b) Derive Dupire’s PDE for C(T,K). [You may use without proof the following
fact from stochastic calculus: for all t > 0, the random variable St has a density ψ(t, ·).
Furthermore, the function ψ is continuous and satisfies the equation

E[(ST −K)+] = (S0 −K)+ +

∫ T

0

∫

∞

K

rsψ(t, s)ds dt+
1

2

∫ T

0
K2σ(t,K)2ψ(t,K)dt

for all K,T > 0.]

(c) Let P (T,K) be the minimal replication cost of a European put with strike K and
maturity T . Show that P (T,K) also satisfies Dupire’s PDE.
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