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A nearly edge-on axisymmetric circumstellar disk is observed with a mid-plane
inclined Id ≈ 87◦ to the sky-plane. An orthonormal astrocentric reference frame [X̂, Ŷ, Ẑ]
is defined with X̂ and Ŷ in the sky-plane, X̂ pointing toward North and Ẑ toward Earth.
The disk’s ascending node through the sky-plane (in which disk material approaches us)
lies at a position angle Ωd = 45◦ from North. Another orthonormal astrocentric reference
frame [x̂, ŷ, ẑ] is defined with x̂ and ŷ in the disk mid-plane with x̂ in the sky-plane in the
direction of the disk’s ascending node, at which location material moves in the ŷ direction.
Provide an annotated sketch of this geometry, and determine the transformation matrix
T that converts between locations in the two reference frames X and x, respectively, such
that X = T x.

A planet is also observed to orbit the star with an inclination to the sky-plane of
Ip ≈ 88◦. The planet’s ascending node through the sky-plane lies at a position angle
Ωp = 49◦ from North. The planet’s ascending node through the disk mid-plane (that in
which motion is in the positive ẑ direction) is in the direction x̂′ at an angle Ωm from
the x̂ direction. The orthonormal astrocentric reference frame [x̂′, ŷ′, ẑ′] has ŷ′ in the
planet’s orbital plane oriented in the direction of motion at the ascending node. Provide
an updated sketch of this geometry.

There are two ways of applying successive rotations to convert between the [X̂, Ŷ, Ẑ]
and [x̂′, ŷ′, ẑ′] reference frames. Describe how this can be used to determine both Ωm and
the inclination of the planet’s orbit to the disk mid-plane Im as a function of Id, Ip, Ωp

and Ωd, defining any additional angles needed for the transformation.

Hence, or otherwise, show that

cos Im = cos Id cos Ip + sin Id sin Ip cos (Ωp − Ωd),

tanΩm =
sin Ip sin (Ωp − Ωd)

cos Id sin Ip cos (Ωp − Ωd)− sin Id cos Ip
.

Find an expression for Im to second order in the small quantities for the system in
this example, and sketch Im as a function of Ip for 85◦ < Ip < 95◦, quantifying where
possible.

Disk material is spread over a large range of radii from rin to rout, and the orbit
of the planet is significantly interior to the disk. Describe how the orbital planes of disk
material at different radii would be expected to evolve due to the gravity of the planet on
a plot of Im cos Ωm versus Im sinΩm.

Hence explain why the planet causes the disk to appear warped during some epoch
of its evolution.
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A dust particle with radiation pressure coefficient β orbits a star of mass M⋆ near a
planet of mass Mp ≪ M⋆ that is on a circular orbit at a semimajor axis ap. The particle is
on a circular orbit at a semimajor axis a > ap. Determine the semimajor axis at which the
particle orbits the star j times for every j+1 planet orbits, expressed using ǫ ≡ (a−ap)/ap.

Hence show that the planet’s first order mean motion resonances for this particle
are interior to the planet’s orbit for

j >

√
1− β

1−
√
1− β

.

From an initially coplanar circular orbit at a semimajor axis a1, where ǫ1 ≪ 1, the
particle undergoes a single encounter with the planet. Show that to first order in small
quantities the velocity at which the particle encounters the planet in the frame rotating
with the planet is v∞ ≈ vp[1− (1− ǫ1/2)

√
1− β], where vp is the planet’s orbital velocity.

For hyperbolic encounters with an object of mass M at an impact parameter b
and relative velocity v∞, the scattering angle θ can be determined from sin (θ/2) =
[1 + b2v4

∞
/(GM)2]−1/2. If the pre- and post-encounter velocities of the particle in the

inertial frame are v1 and v2, respectively, and θ ≪ 1, show that

(v22 − v21) ≈ 4(Mp/M⋆)
2ǫ−2

1 v5pv
−3
∞

.

Hence show that the new orbit has a semimajor axis with a corresponding ǫ2 that
satisfies

ǫ2 − ǫ1 ≈ 4(Mp/M⋆)
2ǫ−2

1 (1− β)−1(vp/v∞)3.

Determine the longitude of the next conjunction between the particle and planet,
both that which would have occurred in the absence of the encounter λc1, and that
including the perturbation of the encounter λc2, in terms of β, ǫ1 and ǫ2.

The particle’s orbit is unstable if |λc1 − λc2| > 2π. Give a qualitative explanation
for why this should be the case, and show that this means the orbits of particles with
β = 0 near j + 1 : j resonances are unstable for

j > (2/729)1/7(Mp/M⋆)
−2/7.

Using the results obtained so far, sketch how you would expect the critical j above
which j + 1 : j resonances are unstable to depend on β for a few different planet-to-star
mass ratios, giving a physical explanation for any dependences.
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A planet of mass M1 and radius R1 orbits a star of mass M⋆ ≫ M1 and radius
R⋆ ≫ R1 on a nearly circular orbit with a semimajor axis a1 and eccentricity e1 ≪ 1.
The planet is surrounded by a spherical cloud of debris that extends to a distance of
R1 = ηRh1 ≫ R⋆ from the planet, where Rh1 is the planet’s Hill radius. The planet’s
orbit is close to edge-on to our line-of-sight so that the planet and/or debris periodically
transits in front of the star, with period P1, causing the star’s light-curve to exhibit
dimming events each of duration D1. Determine the constraint on P1/D

3
1 in terms of the

mean density of the star ρ⋆ for which it is the debris rather than the planet which is likely
to be causing the dimming.

Show that if the debris causes the dimming then

M1/M⋆ = 3

(

πD1

ηP1

)3

.

An additional planet of mass M2 ≫ M1 orbits the star in the same plane as M1 on

a circular orbit with semimajor axis a2 and orbital period P2 = P1

(

j+1
j

)

(1 + ∆), where

|∆| is large enough for the planets not to be in mean motion resonance, but small enough
for perturbations due to the j+1 : j resonance to dominate the orbital evolution of planet
1. The relevant term in the disturbing function is R1 = (GM2/a2)f(α)e1 cosφ1, where f
is a function of α = a1/a2, φ1 = (j + 1)λ2 − jλ1 −̟1, λi is the mean longitude of planet
i, and ̟1 is the longitude of pericentre of planet 1. Lagrange’s planetary equations show
that to lowest order

ȧ1 =
2

n1a1
(∂R1/∂λ1), ǫ̇1 =

1

2n1a
2
1

[−4a1(∂R1/∂a1) + e1(∂R1/∂e1)],

where n1 is the mean motion of planet 1 and ǫ1 is its mean longitude of epoch defined
such that λ1 = n1t+ ǫ1. Show that

λ̇1 = n1[1 + (M2/M⋆)g(α)e1 cosφ1],

where g is a function of α that should be determined.

Solve for the evolution of n1 and λ1, and hence show that, if started at transit at
φ1 = 0, the k-th transit of planet 1 in front of the star occurs after a time

P1k +At sin (2πt/Pt),

where At/Pt ≈ 3
2π

(

M2

M⋆

)

αf(α)e1/∆.

Describe how these calculations would have changed if planet 1 had been in (rather
than just near) the resonance, and comment on how this would affect the period and
amplitude of the expected transit timing variations.
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Consider a planetesimal belt in which the size distribution is defined with narrow
logarithmically-spaced size bins, so that the total mass in bin k is mk and all objects in
the bin have diameter ∼ Dk. You may assume that the size distribution evolves due to
catastrophic collisions, i.e., ṁk = ṁ+c

k − ṁ−c
k , where ṁ+c

k is the rate at which mass is
gained in the k-th bin from catastrophic collisions in other bins and ṁ−c

k is the rate at
which mass is lost from the k-th bin due to catastrophic collisions. The size distribution
of fragments created in catastrophic collisions is scale-independent. Show that when the
size distribution has reached steady state the mass loss rate from the bins is independent
of size.

If the size distribution is a power law defined by a slope α such that n(D) ∝ D−α,
where n(D)dD is the number of planetesimals in the size range D to D+ dD, and Mtot is
the total mass in the distribution, then the rate of collisions onto objects of size Dk with
specific incident energy greater than Q is R(Dk, Q) ∝ MtotQ

(1−α)/3D3−α
k . If the dispersal

threshold Q⋆
D ∝ Db, show that the steady state size distribution has a slope α = 21+b

6+b .

Show that the timescale for the size distribution in bin k to reach steady state is
∼ 1/R(Dk, Q

⋆
D).

The planetesimal belt starts with a power law size distribution defined by α = 7/2
between sizes Dmin and Dmax. The dispersal threshold is Q⋆

D = QaD
−a + QbD

b, where
a = 1/2 and b = 3/2 are the slopes in the strength and gravity regimes respectively,
which has a minimum at Dw where Dmin < Dw < Dmax. Sketch the catastrophic collision
timescale as a function of Dk for this primordial distribution, and hence describe how the
size distribution evolves by sketching the distribution at a few representative epochs that
should be noted on the timescale plot.

After some time T , when the transition between the steady state and primordial
parts of the size distribution is at Dt where Dw < Dt < Dmax, the belt undergoes a
dynamical depletion in which mass in all bins is reduced by a factor f ≫ 1. Describe the
subsequent evolution of the size distribution due to collisions.

The size distribution is measured shortly after the depletion in the absence of
knowledge that the depletion occurred. Determine how long it would be inferred that the
system had been undergoing collisional evolution, and comment on whether the depletion
factor f can be determined from the size distribution.

Show that the number of rubblising collisions, defined as those with sufficient energy
to cause catastrophic disruption in the absence of self-gravity, that objects of size Dt would
have undergone at time T is (Dt/Dw)

4/3.
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