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i. What is a Stinespring representation of a completely positive map?

ii. Suppose ρQ is a state with eigendecomposition ρQ =
∑

06i<d λi|αi〉〈αi|. Write down
the von Neumann entropy S(ρQ) of ρQ as a function of the {λi : 0 6 i < d}.

iii. Define the conditional entropy H(A|B)ρ and coherent information I(A〉B)ρ in terms
of von Neumann entropies.

iv. Why is it true that for any pure state ψQR of a bipartite system QR, H(Q)ψ =
H(R)ψ?

v. The data processing inequality for the coherent information states that if ρAB is a
state and NB′←B is an operation and σAB′ = NB′←BρAB, then

I(A〉B)ρ > I(A〉B′)σ.

Prove this data processing inequality, stating clearly any results you use.

vi. For any state ρABC, show that

H(A)ρ +H(B)ρ 6 H(AC)ρ +H(BC)ρ.

2

In both parts of this question we are assuming that initially Alice possesses a
qubit A and Bob a qubit B which are in the state φ+

AB
= |φ+〉〈φ+|AB where |φ+〉AB =

1√
2
(|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B).

i. Describe in detail how Alice can send two bits of classical information to Bob by
transmission of a single qubit, showing why the protocol you describe works.

ii. Suppose Alice has some real parameter θ in mind, which is unknown to Bob.
Describe a protocol involving only local operations and the communication of a
single bit (i.e. a message taking a value in {0, 1}) from Alice to Bob whereby Bob’s
qubit ends up in the state |αθ〉〈αθ| where |αθ〉 := cos(θ)|0〉+ sin(θ)|1〉.
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In the following question X is an hermitian operator on a d-dimensional Hilbert
space H with an eigendecomposition X =

∑d
i=1 λi|αi〉〈αi|.

i. Write down the positive part of X, X+, the negative part of X, X−, in terms of the
given eigendecomposition.

Define the operator |X| and show that |X| = X+ +X−.

ii. Define the trace norm ‖X‖1 and state the Holevo-Helstrom theorem.

iii. Show that
‖X‖1 = max{TrXT : −I 6 T 6 I},

where I denotes the identity operator on H. Use this to prove the Holevo-Helstrom
theorem.

iv. For states ρ and σ, define the trace distance D(ρ, σ) and fidelity F (ρ, σ).

v. If {|ψi〉 : i = 1, . . . , d} is any orthonormal basis for H, show that

‖X‖1 >

d
∑

i=1

|〈ψi|X|ψi〉|,

stating clearly any results you use. Hence show that for an arbitrary state ρ and
pure state |ψ〉〈ψ|

D(ρ, |ψ〉〈ψ|) > 1− F (ρ, |ψ〉〈ψ|)2 .
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i. For a random variable X taking values in a finite set AX with distribution PX :

Define the entropy of X, H(X).

What is an ǫ-sufficient subset for X?

ii. Let Z and Zi for i ∈ {1, 2, . . .} be random variables, each taking values in a finite
set AZ , and independently and identically distributed according to PZ .

For n ∈ {1, 2, . . .}, let Z(n) = (Z1, Z2, . . . , Zn).

Define the δ-typical subset T nδ (PZ) ⊆ An
Z and, stating clearly any results you use,

show that:

(a) For all δ > 0: limn→∞Pr(Z(n) ∈ T nδ (PZ)) = 1.

(b) |T nδ (PZ)| 6 2(H(Z)+δ)n.

(c) For any ǫ < 1, δ > 0 and all sufficiently large n, if Sn is an ǫ-sufficient set for
Z(n) then

|Sn| >
1− ǫ

2
2(H(Z)−δ)n.

iii. A single use of a k-ary erasure channel takes an input symbol X in AX :=
{0, 1, . . . , k − 1}, and produces an output symbol Y in AY := {e, 0, 1, . . . , k − 1},
with the conditional distribution

NY |X(y|x) =











1− f if y = x,

f if y = e,

0 otherwise.

Use Shannon’s formula to show that the capacity of the discrete memoryless channel
NY |X is (1− f) log k.
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i. If X is a random variable taking values in {1, . . . , k} with distribution PX and
PX(1) = t show that the entropy of X, H(X), satisfies

H(X) 6 h(t) + (1− t) log2(k − 1)

where h(t) := (1− t) log2
1

1−t + t log2
1
t
is the binary entropy function.

ii. Let ρ be a density operator on a d-dimensional Hilbert space H, let {|ψi〉 : i =
1, . . . , d} be an orthonormal basis for H, and let

ρ′ =
d

∑

i=1

|ψi〉〈ψi|ρ|ψi〉〈ψi|.

Show that supp(ρ) ⊆ supp(ρ′) and use Klein’s inequality to show that S(ρ′) > S(ρ).

iii. Let |ρ〉〈ρ|QR be a purification of a state ρQ, where the systems Q and R both
have Hilbert spaces of dimension d. Let σQR := NQ←Q ⊗ idR←R|ρ〉〈ρ|QR and
f2 := 〈ρ|QRσQR|ρ〉QR. Using the previous parts of the question, show that

S(σQR) 6 h(f2) + (1− f2) log2(d
2 − 1).
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