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i) State the Korovkin theorem in its most general form, i.e., give a sufficient condition
for the uniform convergence Un(f) → f for a sequence (Un)

∞
n=1 of positive linear operators

Un : C(K) → C(K), where K is compact. As a corollary derive a sufficient condition for
the periodic case when C(K) = C(T), the space of 2π-periodic continuous functions.

ii) For a 2π-periodic function f ∈ C(T), let sn(f) be its partial Fourier sum of
degree n, and let σn(f) =

1
n

∑n−1
i=0 si(f) be its Fejer sum of degree n− 1.

Using the Korovkin theorem prove that σn(f) → f as n→ ∞ for all f ∈ C(T). You
may use the integral representation for the Fourier sum

sn(f, x) =
1

π

∫

T

Dn(x− t)f(t) dt, Dn(x) =
sin(n+ 1

2 )x

2 sin 1
2x

,

and the fact that sn is an orthogonal projector onto Tn.

iii) Prove that the only positive linear operator U : C(T) → C(T) such that

U(pi) = pi where pi ∈ {1, sin x, cos x}

is the identity operator.
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A) Define a multiresolution analysis of L2(R) with a generator φ and explain how
it is related to existence of an orthonornal wavelet ψ.

B) Prove that the following properties of φ

1) φ(x) =
∑

n

anφ(2x− n), 2) {φ(· − n)}n∈Z is an orthonormal sequence

are equivalent to

1′) f(2t) = m(t)f(t) , m(t) = 1
2

∑

n

ane
−int,

2′)
∑

|f(t+ 2πk)|2 ≡ 1 a.e.

where f is the Fourier transform of φ, i.e., f(t) = φ̂(t) =
∫
R
φ(x)e−ixt dx.

C) Verify that conditions 1′)− 2′) are fulfilled for the function f = φ̂ defined as

f(t) =

{
1, t ∈ [−π, π)
0, otherwise

Using the inverse Fourier transform or otherwise, determine the corresponding generator
φ.

3

Let jn be the Jackson operator, i.e., for a 2π-periodic function f from C(T),

jn(f, x) :=

∫ π

−π
f(x− t)Jn(t) dt, Jn(t) :=

3

2πn(2n2 + 1)

sin4 nt
2

sin4 t
2

,

∫ π

−π
Jn(t) dt = 1.

Carefully justifying each step prove that, for any f ∈ C(T), we have the estimate

‖jn(f)− f‖ 6 c ω2(f,
1
n) ,

where ω2(f, t) is the second modulus of smoothness of f .

Hence, proving the relevant property of ω2(f, t), show that if f is twice continuously
differentiable, then

En(f) 6
c1

n2
‖f ′′‖C(T) .
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a) State the Kolmogorov criterion for the element of best approximation to a real-
valued function f ∈ C[0, 1] from a linear subspace U of C[0, 1].

b) From this criterion, derive the Chebyshev alternation theorem for the element of
best approximation to a function f ∈ C[0, 1] from Pn, the space of all algebraic polynomials
of degree 6 n.

c) From first principles, prove that, for any f ∈ C[−1, 1], the polynomial of best
approximation is unique. (Just referring to Haar’s unicity theorem is not acceptable, but
you may use arguments similar to those in its proof.)

5

Given a knot sequence ∆ = (ti)
n+k
i=1 , let ωi and ℓi(·, t) be polynomials in Pk−1 defined

by
1) ωi(x) := (x−ti+1) · · · (x−ti+k−1),

2) ℓi(·, t) interpolates (· − t)k−1
+ on x = ti, ..., ti+k−1.

Further, let
Ni := (ti+k − ti)[ti, . . . , ti+k](· − t)k−1

+

be the B-spline of order k with the knots ti, . . . , ti+k.

a) Prove Lee’s formula

ωi(x)Ni(t) = ℓi+1(x, t)− ℓi(x, t), ∀x, t ∈ R,

and derive from it the Marsden identity:

(x− t)k−1 =

n∑

i=1

ωi(x)Ni(t), tk < t < tn+1, ∀x ∈ R.

b) From the Marsden identity, find the coefficients a
(m)
i in the B-spline representa-

tion of monomials tm:

tm =

n∑

i=1

a
(m)
i Ni(t), tk < t < tn+1, for m = 0, . . . , k − 1.
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1) Let X be an inner product space with the scalar product (·, ·) and the norm
‖x‖ := (x, x)1/2, and let Un be an n-dimensional subspace.

a) Prove that u∗ ∈ Un is the best approximation to x ∈ X from Un if and only if

(x− u∗, v) = 0 ∀v ∈ Un.

b) Let (uj)
n
j=1 be a basis for Un and let G = ((ui, uj))

n
i,j=1 be the corresponding

Gram matrix. Prove that the elements of the Gramian inverse G−1 = (bjk) are

bjk = (ûj , ûk) ,

where (ûk) is the dual basis, i.e., (ui, ûk) = δik. (Hint. Use δik = (G ·G−1)ik.)

2) Let (Ni) and (Mi) be the B-spline bases of degree k − 1 with the L∞- and
L1-normalizations, respectively, defined on a knot sequence ∆ = (ti)

n+k
i=1 ⊂ [0, 1].

Given f ∈ C[0, 1], let

PS(f) := s∗ =

n∑

j=1

ajNj

be the orthogonal projection of f onto S := span (Nj) with respect to the ordinary inner

product (f, g) =
∫ 1
0 f(x)g(x) dx. Then PS is also well defined as an operator from C[0, 1]

onto C[0, 1].

Carefully justifying each step, show that the max-norm of PS satisfies the inequality

‖PS‖∞ 6 ‖G−1‖ℓ∞

where G =
{
(Mi, Nj)

}h

i,j=1
is the Gram matrix.

3) From the definition

Mi(t) := k[ti, . . . , ti+k](· − t)k−1
+

prove that the B-splines of degree k− 1 have finite support. Hence find the bandwidth of
the Gram matrix G = (Mi, Nj), i.e., the integer d such that

Gij = 0 if |i− j| > d
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