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Suppose that µ is a Borel measure on a locally compact metric space (X, d) and
that f is a non-negative continuous function on X. If f ∈ C0(X) (the space of continuous
functions f on X for which f(x) → 0 as x → ∞) or if f ∈ L2

µ, and if t > 0 let

Pt(f) = e−k(x)tf(x), where k is a non-negative continuous function. In each case, show
that (Pt)t>0 is a contraction semigroup.

In each case, determine the infinitesimal generator L of the semigroup, determine
its domain D(L) and show directly that L is a closed operator.

Explain how such semi-groups can be used to investigate the heat semigroup acting
on L2

λ and the Ornstein-Uhlenbeck semigroup acting on L2
γ (you need only consider the

one-dimensional cases). In each case, determine the spectrum of L and show that their
infinitesimal generators are self-adjoint.

Does the heat semigroup satisfy a Poincaré inequality? Does the Ornstein-Uhlenbeck
semigroup satisfy a Poincaré inequality? Justify your answers.

2

Suppose that (X, d) is a compact metric space. What is a Feller semigroup of
operators on C(X)?

Suppose that (Pt)t>0 is a contraction semigroup on C(X) with infinitesimal gener-
ator L. Show that if 1 ∈ D(L) and L(1) = 0 then (Pt)t>0 is a Feller semigroup.

Suppose now that (Pt)t>0 is a Feller semigroup on C(X) with infinitesimal generator
L. Establish the existence of transition probabilities.

What is an invariant probability measure on X? Show that if µ is an invariant
probability measure on X, if 1 6 p < ∞ and if f ∈ C(X) then ‖Pt(f)‖p 6 ‖f‖p for t > 0,
and that ‖Pt(f)− f‖p → 0 as t → 0.

Suppose that f and f2 are in D(L). Show that L(f2) > 2fL(f).

Let ν be a Borel probability measure on X. If f ∈ C(X), let

φn(f) =
1

n

∫ n

0

(
∫

X

Ps(f) dν

)

ds.

Explain briefly why there exist a subsequence (φnk
) and a Borel probability measure µ

such that φnk
(f) →

∫

X
f dµ as k → ∞, for all f ∈ C(X). Show that µ is an invariant

probability measure.
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Suppose that A is a symmetric closed linear operator on a Hilbert space H, with
dense domain. What does it mean to say that A is self-adjoint? Show that if A is self-
adjoint then σ(A) ⊆ R.

Suppose that T is a bounded self-adjoint operator on a Hilbert space H. Define the
numerical range W (T ) and the numerical radius w(T ) of T . Show that σ(T ) ⊆ W (T ) ⊆ R.

Show that α = infW (T ) and β = supW (T ) are approximate eigenvalues of T .

Suppose that A is a self-adjoint closed linear operator on H with dense domain.
Show that A is positive semi-definite if and only if σ(A) ⊆ [0,∞).

4

Let G be the group Dd
2 , with Haar measure µ. Define the Bernoulli functions ǫi

and Walsh functions wA on G, and show that the Walsh functions form an orthonormal
basis for L2(G).

If ω, η ∈ G, set ω ∼ η if ωi 6= ηi for exactly one index i. If f ∈ L2(G), set

L(f)(ω) =
1

2

∑

η∼ω

(f(η)− f(ω)).

Detremine the eigenvectors and eigenvalues of L, and show that L is a negative semi-
definite operator on L2(G).

By applying L to a suitable function f show that if a1, . . . , ad are elements of a
normed space (E, ‖.‖) then

∫

G

‖
d
∑

i=1

aiǫi‖
2 dµ 6 2

(

∫

G

‖
d
∑

i=1

aiǫi‖ dµ

)2

.

Suppose that η1, . . . , ηd are independent random variables, each uniformly dis-
tributed on T = {z : |z| = 1}, and that a1, . . . , ad are complex numbers. Show that

d
∑

i=1

|ai|
2
6 2

(

E|
d
∑

i=1

aiηi|

)2

.
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Let γ denote standard Gaussian measure on R. Define the creation operator a+, the
annihilation operator a− and the number operator N . Define the Hermite polynomials,
and show that they are the eigenfunctions of N . (You may assume that the polynomial
functions are dense in L2(γ).)

Show that N is positive semi-definite. How is N used to define the Ornstein-
Uhlenbeck semigroup (Pt)t>0? Show that Pt(f) →

∫

f dγ as t → ∞, and that dPt(f)/dx =
e−tPt(df/dx).

Suppose that f is a differentiable function with continuous bounded derivative, that
f(x) > ǫ for all x ∈ R and that ‖f‖1 = 1. Find an expression for the energy Eγ(f). Show
that Entγ(f

2) 6 2Eγ(f).

(You may assume that if g is a bounded continuous function, then (Pt(g))
2 6

Pt(g
2/f).Pt(f).)
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