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1

Consider an infinite cylinder of radius a and negative linear charge density −λ
immersed in an electrolyte solution with an axisymmetric concentration n(r) of positive
charges q and a dielectric constant ǫ. Write down the Poisson-Boltzmann equation
relating the charge density ρ(r) = qn(r) to the electrostatic potential φ(r), introducing
an appropriate normalization factor n0 for the concentration. By further introducing the
change of coordinates u = ln(r/a) and Φ = βqφ − 2u, where β = 1/kBT , show that the
Poisson-Boltzmann equation takes the form

d2Φ

du2
= −

4πβn0q
2a2

ǫ
e−Φ .

Solve this for Φ, assuming Φ(a) = 0 and that Φ → ∞ and dΦ/du → 0 as u → ∞.
Express the electric field magnitude E(r) for r > a in terms of λ and ρ and thereby find
an expression for the total screening charge density Qscreening around the cylinder in terms
of ρ(r). Using the relationship between dφ/dr at r = a and λ, solve for the normalization
constant n0. Show that “counterion condensation” occurs, such that n0 = 0 for λ < λc

and n0 > 0 for λ > λc, where λc = q/ℓB , with ℓB the Bjerrum length. Show that
Qscreening = λ− λc for λ > λc.

2

Suppose an elastic filament of length L and bending modulus A is held parallel to
the x-axis, and clamped at its left end so that its (presumed small) displacement h(x)
from the x-axis satisfies h(0) = hx(0) = 0. If its right-hand end is unconstrained, state the
boundary conditions on h that hold there. Using the form of the Euler-Lagrange equation
for the appropriate functional for the bending energy, show that the shape of any function
h(x) satisfying the above boundary conditions is of the general biharmonic form,

Wn(x) = B sin knx+D cos knx+ E sinh knx+ F cosh knx ,

where kn is the nth root of the transcendental equation cos kL cosh kL = −1. Graphically
or otherwise estimate the first positive root k1. From these results, show that

Wn(x) = N [(sin qn + sinh qn) (cos knx− cosh knx)

− (cos qn + cosh qn) (sin knx− sinh knx)] , (1)

where N is a normalization constant and qn = knL. Calculate the mean squared
fluctuation of the free end at temperature T . [You may use without proof the relationship

Wn(L)
2 = 4In, where In = (1/L)

∫
L

0
dxWn(x)

2.]
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In the simplest model of so-called ‘phase oscillators’, the dynamics of an angular
variable ∆(t) takes the form

θ̇ = ω − ǫ sin θ + ξ(t) , (1)

where ω > 0 is an intrinsic frequency difference, ǫ > 0 is a coupling constant, and the
Langevin noise is Gaussianly distributed with 〈ξ〉 = 0 and 〈ξ(t)ξ(t′)〉 = 2Teffδ(t− t′), with
Teff an effective temperature.

(a) Examining first the noise-free case, show by graphing the right-hand-side of (1)
that there is a pair of fixed points for θ ∈ (0, 2π) for ω < ǫ and no fixed points for ω > ǫ. In
the former case, find the fixed points analytically and determine the stability of both. In
this type of overdamped dynamics, the right-hand-side of the equation can be interpreted
as an effective force. Find the potential V (θ) which governs that force. Explain graphically
or otherwise the distinction, in terms of V (θ) between the two regimes ω < ǫ and ω > ǫ .

(b) When Teff 6= 0, the mechanical analogy deduced in (a) becomes a statistical
physics problem in which θ is the coordinate of a Brownian particle moving on the
‘landscape’ V (θ). When the stable fixed point θ∗ found in (a) exists and the Teff is
appropriately small, the particle exhibits noisy small-amplitude fluctuations around θ∗.
Calculate the autocorrelation function 〈θ(t)θ(t+ τ)〉 in the limit of large t in that regime,
expressing your answer in terms of ω, ǫ, and Teff . As the temperature is increased there
will be an ever greater probability of crossing over potential energy barriers. Using general
arguments about thermally-assisted hopping over potential barriers, deduce the relative
probability P = p+/p− of hopping from θ∗ to θ∗ + 2π versus from θ∗ to θ∗ − 2π when
ω ≪ ǫ.
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