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(a) Lighthill’s equation describing aerodynamic sound generation is

∂2ρ′

∂t2
− c0

2∇2ρ′ =
∂2Tij
∂xi∂xj

, (†)

where Tij = ρuiuj + (p′ − c0
2ρ′)δij − σij is a quadrupole distribution.

(i) Show that the far-field sound generated by a compact quadrupole distribution is

ρ′(x, t) =
xixjS̈ij(t− |x|/c0)

4πc04|x|3
where Sij(τ) =

∫
Tij(y, τ) d

3y

and ˙ denotes differentiation with respect to t. Show further that ρ′ scales like O(m4),
where m is the fluctuating Mach number.

(ii) Now consider motion at a single frequency ω. Show that in two dimensions ρ′ scales like
O
(
m7/2

)
.

[In two dimensions, the free-space Green’s function for the Helmholtz equation has the
far-field form

G̃(x; k0) ∼
exp{−ik0|x|}√

k0|x|
as |x| → ∞

where k0 = ω/c0.]

(b) Consider a shock wave (i.e. a surface of discontinuity) in a fluid, with equation S(x, t) = 0,
with S > 0 on one side of the shock and S < 0 on the other side.

(i) Suppose

∂a+

∂t
+∇ · b+ = 0 for S(x, t) > 0,

∂a−

∂t
+∇ · b− = 0 for S(x, t) < 0,

with a± and b± continuously differentiable functions. Show that

∂a

∂t
+∇ · b = f · n|∇S|δ(S),

where a = a+H(S) + a−H(−S), b = b+H(S) + b−H(−S), n is a unit vector normal to
the shock, and f is an expression that should be found explicitly. [Note that f involves
v, the velocity of the shock.]

(ii) Hence, find the equivalent of Lighthill’s equation (†) for ρ′ = ρ+H(S) + ρ−H(−S)− ρ0.
Give a physical interpretation of each of the source terms in your equation. Without
further calculation, explain whether you would still expect ρ′ to scale like O(m4) in the
far-field compact limit with a shock present.
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This question considers 2D harmonic motion, so there is no z dependence and time dependence
eiωt is assumed. You may like to consider Im(ω) < 0.

(a) An elastic membrane is stretched along y = 0 with tension T . The membrane undergoes
small oscillations, with its displacement η(x) in the y-direction governed by

−mω2η = T
∂2η

∂x2
−

[
p
]0+
0−
,

where [p]0+0− is the pressure difference across the membrane. Above and below the membrane
is a compressible fluid, and motion of the membrane causes waves in the fluid with unsteady
pressure p satisfying Helmholtz equation ∇2p + k0

2p = 0, where k0 = ω/c0. The boundary
condition of no flow through the membrane implies

η =
1

ρ0ω2

∂p

∂y

∣∣∣∣
y=0−

=
1

ρ0ω2

∂p

∂y

∣∣∣∣
y=0+

.

By Fourier transforming in the x direction, find the dispersion relation D(ω, k) = 0 for waves
on the membrane.

(b) Now consider a semi-infinite elastic membrane pinned at (x, y) = (0, 0) and stretched along
y = 0 for x < 0. A wave on the membrane is incident from x = −∞, giving a displacement
ηI = e−ikIx where D(ω, kI) = 0 and Im(kI) < 0 (thus corresponding to a right-propagating
wave). Because the membrane is only semi-infinite, the incoming wave scatters into sound in
the fluid and left-propagating waves on the membrane.

Let η = ηI + η′ and p = pI + p′, where pI is the pressure corresponding to displacement
ηI from your solution to (a). The governing equations are then

0 = ∇2p′ + k0
2p′ ∀x,

η′ =
1

ρ0ω2

∂p′

∂y

∣∣∣∣
y=0−

=
1

ρ0ω2

∂p′

∂y

∣∣∣∣
y=0+

∀x,

[
p′
]0+
0−

= mω2η′ + T
∂2η′

∂x2
x < 0,

[
p′
]0+
0−

= −
[
pI

]0+
0−

x > 0.

Briefly justify why these are the governing equations. By taking full- and half-range Fourier
transforms in the x direction, find the Wiener–Hopf equation

K(k)P−(k) + η+(k) =
T

mω2 − Tk2
∂η

∂x

∣∣∣∣
x=0

+
iγ(k)

(k − kI)γ(kI)
,

where γ2 = k2 − k0
2 with Re(γ) > 0 for real k, P− is the left half-range Fourier transform

of p′(x, 0+), η+ is the right half-range Fourier transform of η′, and K(k) is the Wiener–Hopf
kernel to be given explicitly.

Assuming that K(k) can be factorized as K(k) = K+(k)K−(k) (which should not be
found explicitly), what singularities do K+ and K− have? Describe the zeros of K+ and K−

(which you need not find explicitly). Assuming the existence of any factorizations you need
(which should not be found explicitly), and that the resulting entire function E(k) is identically
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zero, give an integral expression for the pressure p in the fluid. Show also that η− has a pole in
the lower half plane. What does this pole represent physically, and how might it imply a value
for the as yet undetermined constant ∂η/∂x|x=0.
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Burgers’ equation is
∂f

∂Z
− f

∂f

∂θ
= α

∂2f

∂θ2
.

The inviscid Burgers’ equation is obtained by setting α = 0.

(a) Show that the inviscid Burgers’ equation with initial conditions f(0, θ) = f0(θ) has solution
f
(
Z, θ0 − f0(θ0)Z

)
= f0(θ0). Show also that if there is a weak shock at θs(Z) then

dθs
dZ

= −1
2 lim
δ→0

(
f(Z, θs + δ) + f(Z, θs − δ)

)
.

Solve the inviscid Burgers’ equation for the initial conditions

f(0, θ) =

{
0 θ < 0
U θ > 0

(*)

being careful to distinguish between U < 0 and U > 0.

[It may help to sketch the characteristics first. For U < 0, think of f(0, θ) as being continuous
but very steep at θ = 0.]

(b) For α 6= 0, show that the Cole–Hopf transformation

f = 2α
∂

∂θ
logψ

can be used to solve Burgers’ equation when ψ satisfies a diffusion equation. Given that the
general solution to the diffusion equation is

ψ(Z, θ) =
1√

4παZ

∫
∞

−∞

ψ(0, φ) exp

{
−(φ− θ)2

4αZ

}
dφ,

show that the solution to the full Burgers’ equation for the initial conditions given in (*) is

f(Z, θ) =
U

1 + J(Z, θ) exp
{
− U(2θ + UZ)/4α

} ,

where

J(Z, θ) =

∫
∞

θ
exp

{
− y2/4αZ

}
dy

∫
∞

−(θ+UZ)
exp

{
− y2/4αZ

}
dy

.

What happens (i) as θ → ∞, (ii) as θ → −∞, and (iii) when J = 1? How does this compare
with your inviscid solution found in (a)?


Note: erfc(x) =

2√
π

∫
∞

x
e−t2 dt ∼





e−x2

x
√
π

as x→ +∞

2 as x→ −∞

.



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