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Starting from Darcy’s law, show that the pressure field in a uniform porous medium
satisfies Laplace’s equation.

An infinite porous medium of uniform permeability Π is saturated with water of
density ρ, dynamic viscosity µ and temperature T∞ < Tm, where Tm is the equilibrium
freezing temperature at the initial pressure p = 0. The equilibrium freezing temperature
Te at pressure p is given by

ρsL
Tm − Te

Tm

= p

(

1−
ρs
ρ

)

,

where ρs < ρ is the density of ice and L is the specific latent heat of fusion of water into
ice.

A spherical region with radius a(t) of ice-filled pores forms within the porous
medium. Use mass conservation to determine the radial Darcy velocity u = u(r, t). In
particular, show that

φ(ρ− ρs)ȧ = ρu(a, t),

where φ is the porosity of the medium. Hence, or otherwise, determine the pressure field
p(r, t).

Write down a complete set of equations and boundary conditions to describe the
spherically-symmetric evolution of this system, ignoring any effects of surface energy.
Given that L/cp(Tm−T∞) ≫ 1, where cp is the specific heat capacity of water, ice and the
matrix of the porous medium, explain carefully, with a scaling analysis of the governing
equations, why the temperature field can be treated as quasi-steady, satisfying Laplace’s
equation. Find a solution for the temperature field T and the radius of the frozen region
a(t) in this regime.

Determine and comment on the behaviour of p(a), T (a) and a(t) as the permeability
decreases.
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When assessed on geological time scales the building of mountain ranges at conver-
gent plate margins may be considered to be approximately viscous. Consider a simplified,
two-dimensional geometry in which a rigid tectonic plate converges with a pre-existing
mountain range of density ρ and viscosity µ at velocity U . If the converging plate remains
undeformed (ie. is horizontal at all times) determine the predominantly horizontal fluid
velocity of the mountain range in the limit where gravitational spreading of the mountains
is balanced by viscous stresses exerted by the underthrusting plate. Integrate vertically to
find the horizontal mass flux and determine the topography of the mountain range, h(x),
as a function of the distance from the contact line, x.

In the same geometry, now consider the addition of a pre-existing sedimentary basin
of equal density ρ and viscosity µs < µ that covers the plate to a depth d(x), thereby
reducing the effective viscous coupling between the mountain range and the plate. By
considering the fluid velocities within the mountain and sedimentary layer, derive the set
of coupled equations governing the topography h(x) of the mountain range (as measured
from the plate) and the thickness of the basal sedimentary layer d(x), assuming that the
sedimentary layer has thickness d∞ far from the contact line. Show that, in steady state,
there is a relationship between the topography of the mountain and the sedimentary layer
thickness given by

(h− d)2 +
3d

2M

(

2−
d

d− d∞

)

(h− d) +
d2

M

(

3

2
−

d

d− d∞

)

= 0,

where M ≡ µs/µ is the ratio of sedimentary basin and mountain viscosities.

Evaluate the height of the contact line above the plate, and the slope of the mountain
range as a function of M . In addition, find the analytical expression for the profile of the
sedimentary basin in front of the contact line.
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A collision of asteroidal bodies results in a large, nearly pure iron asteroid of radius
R with a uniform interior temperature T > Tm above the melting point of pure iron.
Radiative cooling at the surface maintains a surface temperature Ts < Tm, and hence
drives the formation of an iron crust of thickness a(t) and a cold thermal boundary layer.
A combination of two potential mechanisms thus controls the asteroid’s evolution; cooling
through thermal convection and the viscous deformation and sinking of the solidified crust
to form the asteroidal core, which can be treated as a convection process with the crust
acting as a dense, viscous thermal boundary layer.

First consider the diffusive growth of the crust and thermal boundary layer while
a ≪ R. In your analysis of the diffusive growth you may neglect differences in specific heat
cp and thermal conductivity k between phases in your analysis of boundary layer growth.
You may also neglect density differences between the phases except insofar as they affect
the buoyancy. Find the rate of crustal growth as a function of latent heat per unit mass
L, the cooling from the roof ∆T = Tm − Ts, and the interior temperature T . You should
determine the similarity solution for the general problem and then find an approximate
solution in the limit of large Stefan number, S = L/cp∆T . This approximation may be
used for the remainder of the question.

The cold thermal boundary layer in the liquid and the viscous solid crust are both
prone to convective instabilities. Estimate the ratio of characteristic timescales of the
thermal boundary layer and viscous crust, assuming a driving temperature difference
∆T = 125 K, latent heat L = 2.7 × 105 J kg−1, specific heat cp = 850 J kg−1K−1, ratio
of viscosities µs/µl ≃ 1018, thermal coefficient of expansion of the liquid α = 10−4 K−1,
densities ρs = 8500 kg m−3 and ρf = 8000 kg m−3, and for a range of interior temperatures
T − Tm = (10−2

− 102)(Tm − Ts). Using scaling arguments, or otherwise, construct
expressions for the thermal flux and solid flux averaged over many overturn cycles.

At late times, the remaining liquid interior is at the melting temperature T = Tm.
The viscous instability of the crust releases dense, solid iron which sinks to form an inner
core. Estimate the size of the inner core radius b(t) as a function of the radius of the
asteroid R, using the expression for the solid flux derived earlier.
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