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In this question we will consider the following inhomogeneous Liouville equation
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∂tf(t, x, v)+

d
∑

i=1

∂H

∂vi
(t, x, v)

∂f

∂xi
(t, x, v) x, v ∈ R

d, t > 0

−

d
∑

i=1

∂H

∂xi
(t, x, v)

∂f

∂vi
(t, x, v) = h(t, x, v)

f |t=0 = f0.

(1)

(a) Write the characteristic equations associated to (1) and give conditions on H under
which there exists a unique global solutions to these equations (the conditions need
not be optimal).

(b) Prove that for any d, if H ∈ C2
(

R
d × R

d × R
)

satisfies conditions under which a
unique global solution to the characteristic equations exists, one has that

J(t, x, v) = det

(

∂(St(x, v))

∂(x, v)

)

= 1

for all t > 0, x, v ∈ R
d, where St(x, v) = (X(t), V (t)) is the solution to characteristic

equations with initial data (x, v).

(c) Show that
H(X(t), V (t)) = H(x, v).

(d) Consider the case where

Hω(x, v) =
1

2
|v|2 +

ω2

2
|x|2 .

Show without solving the characteristic equations that in the case where h = 0, if f0
is compactly supported and is continuously differentiable, then ft is also compactly
supported uniformly in t.

(e) Solve the characteristic equation for Hω when d = 3 and find an explicit solution to
the inhomogeneous Liouville equation in that case.

(f) Under the conditions above, show that if h doesn’t depend on t and f0, h ∈
L
p
x,v

(

R
d × R

d
)

∩ C1
(

R
d × R

d
)

for 1 < p < ∞, then ft ∈ L
p
t,x,v

(

[0, T ]× R
d × R

d
)

for any T > 0, where ft is the solution for (1). Show, by finding a concrete example,
that it doesn’t always hold that ft ∈ Lp

(

R
+ × R

d × R
d
)

even if f0 = 0.
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In this question we will consider the general linear Boltzmann equation

{

∂tf(t, x, v) + v · ∇xf(t, x, v) =
∫

Rd k(t, x, v, v∗)f(t, x, v∗)dv∗ − a(t, x, v)f(t, x, v))

f |t=0 = f0.

where x, v ∈ R
d, t ∈ (0, T ) for some T > 0, a > 0, f0 ∈ L2

x,v

(

R
d × R

d
)

and k is such that

C2 =

∫

Rd×Rd

sup
t∈[0,T ],x∈Rd

k2(t, x, v, v∗)dvdv∗ < ∞.

We say that f is a weak solution to the general linear Boltzmann equation if f(t, ·, ·) ∈
L2
x,v

(

R
d × R

d
)

for all t ∈ [0, T ),

sup
06s6t

‖f(t, ·, ·)‖L2
x,v

< ∞,

for any t < T and

f(t, x, v) = e−
∫ t

0
a(τ,x−v(t−τ),v)dτ f0(x− vt, v)

+

∫ t

0
e−

∫ t

s
a(τ,x−v(t−τ),v)dτK(f)(s, x− v(t− s), v)ds

in the L2 sense, where

K(f)(t, x, v) =

∫

Rd

k(t, x, v, v∗)f(t, x, v∗)dv∗.

Our goal will be to show the existence and uniqueness of weak solutions to our equation.

(a) Show that under the above conditions if g ∈ L2
x,v

(

R
d × R

d
)

then

‖K(g)‖L2
x,v

6 C‖g‖L2
x,v

and conclude that K is a linear bounded operator from L2
x,v

(

R
d × R

d
)

to itself.

(b) Defining

F (f0, a)(t, x, v) = e−
∫ t

0
a(τ,x−v(t−τ),v)dτ f0(x− vt, v)

show that
sup
06s6t

‖F (f0, a)(s, ·, ·)‖L2
x,v

6 ‖f0‖L2
x,v

.

(c) Defining

τ(f)(t, x, v) =

∫ t

0
e−

∫ t

s
a(τ,x−v(t−τ),v)dτK(f)(s, x− v(t− s), v)ds

show that
‖τ(f)(t, ·, ·)‖L2

x,v
6 C sup

06s6t

‖f(s, ·, ·)‖L2
x,v

t.
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(d) Show that

‖τn(f)(t, ·, ·)‖L2
x,v

6
Cntn

√

1 · 3 . . . (2n− 1)
sup
06s6t

‖f(s, ·, ·)‖L2
x,v

.

(e) Prove that the equation
(I − τ)f = F (f0, a)

has a solution that satisfies

sup
06t6T

‖f(t, ·, ·)‖L2
x,v

6 CT ‖f0‖L2
x,v

for some constant CT > 0 and conclude the existence of weak solution to the linear
Boltzmann equation.

(f) Show that under our conditions, the weak solution to our equation is unique.
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In this question we will investigate another physically important equation, the
Fokker Planck equation, and the problem of convergence to equilibrium in it. The simple
Fokker Planck equation on R

d is given by
{

∂tf(t, v) = ∆f(t, v) +∇ · (f(t, v)v)

f |t=0 = f0.
(1)

(a) Show that γ(v) = 1

(2π)
d
2

e−
|v|2

2 is a stationary solution to (1).

(b) Denoting by

M(t) =

∫

Rd

f(t, v)dv,

u(t) =
1

M(t)

∫

Rd

vf(t, v)dv,

E(t) =
1

2

∫

Rd

|v|2 f(t, v)dv.

Assuming enough regularity and decay at infinity, find differential equations to M(t),
{ui(t)}i=1,...,d, E(t) and solve them. Conclude that

M(t) = M(0)

u(t) −→
t→∞

0

and

E(t) −→
t→∞

dM(0)

2
.

From this point onward we will assume that f > 0 for all t, d = 1 andM(0) =
∫

R
f0(v)dv =

1. As in this case the mass of f and γ are equal, and in the limit as time goes to infinity
so are the momentum and energy, it is conceivable to conjecture that f will converge to
γ. Finding the right ’distance’ to measure this convergence will occupy us for the rest of
the problem. You may assume that f is regular enough and decays at infinity sufficiently
fast from this point onward.

(c) Define the relative entropy of f with respect to γ as

H(f |γ) =

∫

R

f log

(

f

γ

)

dv =

∫

R

f

γ
log

(

f

γ

)

γdv

. Using the fact that x log x− x+ 1 > 0 for all x > 0 show that H(f |γ) > 0.

(d) Show the following equalities

∫

R

f ′′ log fdv = −

∫

R

|f ′|2

f
dv,

∫

R

(fv)′ log fdv = 1,
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and conclude that if f solves (1) then

d

dt
H(ft|γ) = −

(

∫

R

|f ′

t|
2

ft
dv +

∫

R

v2ftdv − 2

)

= −

∫

R

∣

∣

∣

∣

d

dv
log

(

ft

γ

)∣

∣

∣

∣

2

ftdv = −I(ft|γ),

which proves that H(f |γ) is decreasing in time. I(f |γ) is called the relative Fisher
Information of f with respect to γ.

(e) One can show that if f solves (1) then

I(ft|γ) 6 −
1

2

d

dt
I(ft|γ).

Use the above to show that I(ft|γ) converges to zero exponentially fast, and together
with with the monotonicity and positivity ofH show thatH(ft|γ)

d
dt
H(ft|γ) ∈ L1

t (R
+).

(f) The above implies that limt→∞H(ft|γ) = 0 (you don’t need to prove it). Use the
fundamental theorem of calculus to conclude that for any t > 0

H(ft|γ) 6 −
1

2

d

dt
H(ft|γ),

and give an explicit estimation to the convergence to equilibrium of ft using H and
the initial data alone..

END OF PAPER
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