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1 (i) Let G be a bipartite graph with finite vertex sets X and Y and with at least
δ|X||Y | edges. Prove that the number of ordered quadruples (x1, x2, y1, y2) ∈ X×X×Y×Y
such that all four pairs xiyj are edges of G is at least δ4|X|2|Y |2.

(ii) Let A ⊂ ZN . Let (x1, x2, . . . , x6) ∈ Z
6

N be chosen uniformly at random from
the set of all sextuples such that x1 + x2 + x3 = x4 + x5 + x6. Prove that the probability
that every xi is an element of A is

∑
r |Â(r)|6, where Â is the Fourier transform of the

characteristic function of A. You may assume facts and definitions of Fourier transforms.

(iii) Let P be a polynomial in n variables with coefficients in Fp. Show that if P
has total degree less than p and is not the zero polynomial, then there exists an n-tuple
(a1, . . . , an) ∈ F

n
p such that P (a1, . . . , an) 6= 0.

(iv) Let f : ZN → C be a function such that ‖f‖∞ 6 1 and such that

|Ex,a,bf(x)f(x− a)f(x− b)f(x− a− b)ω−2ab| > c.

Prove that there exists r ∈ ZN such that

|Exf(x)ω
−rx−x2| > c1/2.

Here, ω = exp(2πi/N) and the variables in the averages range independently over ZN . You
may assume facts and definitions of Fourier transforms.

2 Let A be a subset of {1, 2, . . . , N} of density δ > 0 that contains no arith-
metic progression of length 3. Prove that if N is sufficiently large, then there is an
arithmetic progression P ⊂ {1, 2, . . . , N} of length at least η

√
N such that |A ∩ P | >

(δ + cδ2)|P |, where η > 0 depends on δ only and c > 0 is an absolute constant. (Def-
initions and basic facts concerning the discrete Fourier transform may be assumed.)

3 (i) Let G be a bipartite graph with finite vertex sets X and Y . Let A ⊂ X and
B ⊂ Y and let ǫ > 0. What does it mean to say that the pair (A,B) is ǫ-regular? If X is
partitioned into sets X1 ∪ · · · ∪Xr and Y into sets Y1 ∪ · · · ∪ Ys, what does it mean to say
that the pair of partitions is ǫ-regular?

(ii) Prove that for every ǫ > 0 there exists K such that for every bipartite graph G
with finite vertex sets X and Y there is an ǫ-regular pair of partitions of X and Y with at
most K cells in each partition. (You may assume basic facts about conditional expecta-
tions.)
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4 Prove that there exists a constant C < 3 such that for every positive integer n, every
subset of Fn

3
of size at least Cn contains three distinct elements x, y, z such that x+y+z = 0.

(You may assume that if X1, . . . ,Xn are independent random variables, each uniformly
distributed in the set {−1, 0, 1}, then the probability that

∑
i Xi > n/3 is at most

exp(−n/12).)
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