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1. Let M be a continuous local martingale that is bounded by an integrable random
variable Z, i.e., supt |Mt| 6 Z. Show that M is a martingale. Is M uniformly
integrable?

2. Let B be a standard Brownian motion, and let H be a continuous adapted process
with

∫

∞

0 H2
s ds = ∞ almost surely. For σ > 0, let Tσ = inf{t :

∫ t
0 H

2
s ds > σ2}. Find

the distribution of the random variable

Xσ =

∫ Tσ

0
Hs dBs.

[If you use the Dubins–Schwarz theorem, you must prove it.]

3. Let B be a standard Brownian motion with B0 = 0. For a > 0, prove that

P(sup
t6s

|Bt| > a) 6 2e−
a
2

2s .

4. Let f : Rn → R be a C2 function such that |f(x)| + |∇f(x)|2 + |∆f(x)| 6 C|x|2−ǫ

for some C, ǫ > 0. Prove that

Mt = exp

(

f(Bt)−
1

2

∫ t

0
(|∇f(Bs)|

2 +∆f(Bs)) ds

)

is a (true) martingale.
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1. Let M be an bounded martingale with |Mt| 6 C for all t where C is a deterministic
constant. Let 0 = t0 < t1 < · · · < tn = t. Prove that

E





(

n
∑

i=1

(Mti −Mti−1
)2

)2


 6 48C4.

2. Let b : R → R be a smooth function with ‖b′‖∞ < ∞. Prove that for every
continuous function w : R+ → R and every x0 ∈ R, there is a unique continuous
solution x : R+ → R to the integral equation

x(t) = x0 +

∫ t

0
b(x(s)) ds + w(t).

Now let (Wt)t>0 is a continuous stochastic process and let Ft = σ(Ws : s 6 t).
Define X = (Xt)t>0 by Xt = x(t) where x(t) is the solution above with w = W .
Show that X is adapted with respect to the filtration (Ft)t>0.

3. Suppose that H : R → R is smooth and satisfies, for some constant C,

H(x) → ∞ (|x| → ∞), −
1

2
H ′′(x) +H ′(x)2 > −C (x ∈ R).

Let X be the local solution to the SDE

dXt = −H ′(Xt) dt+ dBt, X0 = x.

Prove that this SDE has a global solution, i.e., the explosion time T is +∞ a.s.
[You may use the characterisation of the explosion time proved in the lectures.]

[Hint: Consider H(Xt).]
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1. Define the terms strong solution, weak solution, uniqueness in law, and pathwise
uniqueness for an SDE.

2. Let a > 0. Set Ta = inf{s > a : Bs = 0}. Show that

Xt =

{

0 (t < Ta)

B3
t (t > Ta)

is a strong solution to the SDE

dXt = 3sign(Xt)|Xt|
1/3 + 3|Xt|

2/3 dBt.

Conclude that pathwise uniqueness does not hold for this SDE.

3. State and prove the Feynman–Kac formula for X = B a standard Brownian motion.

4. Use the Feynman–Kac formula to compute

Ex(e
−σ

∫
t

0
Bs ds)

where B0 = x under the law Px for which Ex is the expectation.

[Hint: the following ansatz might be useful: eA(t)x+B(t). You are allowed to assume
uniqueness of any differential equation that might be useful.]
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1. Let M and N be continuous local martingales, and let t > s. Prove that

|〈M,N〉t − 〈M,N〉s| 6
√

〈M,M〉t − 〈M,M〉s
√

〈N,N〉t − 〈N,N〉s.

2. Find a weak solution to the SDE

dXt = sign(Xt) dBt, X0 = 0, sign(x) =

{

+1 (x > 0)

−1 (x 6 0).

Show that the SDE does not have a strong solution. You may use the following result
without proof: For every continuous semimartingale X, there exists a continuous
increasing process (Lt) such that

|Xt| = |X0|+

∫ t

0
sign(Xs) dXs + Lt

and L is adapted to the completed filtration of |X|.

3. Let 1
2σ

2 6= β, and let X be unique strong solution to the SDE

dXt = βXt dt+ σXt dBt, X0 = x > 0. (∗)

Let Ts = inf{t > 0 : Xt = s} and assume that x ∈ (r,R), where r > 0. Compute
P(Tr < TR).

[Hint: Find the generator L associated to (∗) and compute Lf for f(x) = xγ where
γ ∈ R is a constant.]
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1. Define what it means for a process to be a simple process. Let H be a simple
process, and let B be a standard Brownian motion with B0 = 0. Define H ·B, show
that H · B is a martingale, and prove that (H · B)2t −

∫ t
0 H

2
s ds is a martingale.

2. Let f : [0,∞) → R be a deterministic continuous function. Prove that

E

(

Bt

∫ t

0
f(s) dBs

)

=

∫ t

0
f(s) ds.

3. Let µ, σ : [0,∞) → R be deterministic continuous functions, assume that σ is
bounded below by a strictly positive constant, and that µ has compact support.
Assume that X is a solution to

dXt = Xt(µ(t) dt+ σ(t) dBt), X0 = 1,

with respect to the probability measure P.

Prove that Xte
−

∫
t

0
µ(s) ds is a local martingale under P.

Find a probability measure Q such that X is a local martingale.

6

1. Show that a continuous martingale that is almost surely of finite variation is
constant.

2. Let B and B̃ be independent standard Brownian motions defined on the same
probability space with B0 = B̃0 = 0. Let

Xt = eBt

∫ t

0
e−Bs dB̃s, Yt = sinhBt.

Show that X and Y have the same law. [You may use that SDEs with Lipschitz
coefficients satisfy the uniqueness in law property.]

3. Solve the SDE
dXt = (−aXt + b) dt+ σ dBt, X0 = x,

and compute cov(Xt,Xs) for all t, s > 0.
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