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(a) Give the definition of a compact H-hull A and its half-plane capacity hcap(A).

(b) (i) Prove that hcap(A) = limy→∞ yEiyIm[Bτ ] where τ = inf{t > 0 : Bt /∈ H \A}, B
is a complex Brownian motion, and Eiy denotes the expectation under the law
where B0 = iy. [You may assume without proof that hcap(A) is real.]

(ii) Prove that hcap is monotone: for compact H-hulls A, C, if A ⊆ C, then
hcap(A) 6 hcap(C).

(iii) Prove or disprove: for compact H-hulls A, C, if A ⊆ C and hcap(A) = hcap(C)
then A = C.

(c) Explain what it means for a family (At) of compact H-hulls indexed by t > 0 to be:

(i) non-decreasing ;

(ii) parameterized by capacity ;

(iii) satisfy the local growth property.

(d) Consider the compact H-hulls (At) given by At =
√
2t(H∩D). Determine (with proof)

which of properties (i)–(iii) from part (c) hold for (At). [You may use without proof
that the unique conformal transformation ψ : H \D → H with ψ(z)− z → 0 as z → ∞
is given by ψ(z) = z + 1/z.]
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(a) Suppose that γ is an SLEκ in H from 0 to ∞ and r > 0. Prove that t 7→ rγ(t/r2) has
the same distribution as γ.

(b) Explain how SLEκ connecting two distinct boundary points in a simply connected
domain is defined. Prove also that the definition is well-defined.

(c) Fix κ ∈ (0, 8). Let (gt) be the solution to the Loewner equation driven by Ut =
√
κBt

where B is a standard Brownian motion. Let

Mt(z) = Υ
(κ−8)/8
t S

(8−κ)/κ
t

where zt = xt+iyt = gt(z), Υt = yt/|g′t(z)|, and St = sin(arg(zt−Ut)). For each ǫ > 0,
let τǫ = inf{t > 0 : Υt = ǫ}. [You may use without proof that Mt is a continuous local
martingale.]

(i) Prove that Mt∧τǫ is a bounded martingale. [You may use results from lectures
provided you state them clearly.]

(ii) Suppose that K ⊆ H is compact. Show that there exists ǫ0 > 0 so that
Υ0 > ǫ0 for all z ∈ K. Show that there exists a constant c0 > 0 so that
P[τǫ <∞] 6 c0ǫ

(8−κ)/κ for all z ∈ K and ǫ ∈ (0, ǫ0). [You may use without proof
that there exists a constant c1 > 0 so that P[Sτǫ > 1/2 | τǫ < ∞] > c1 for all
z ∈ K.]

(iii) Show that the range of an SLEκ with κ ∈ (0, 8) in H from 0 to ∞ a.s. has zero
Lebesgue measure. [Hint: bound the expected Lebesgue measure of the set of
points z ∈ K for which τǫ <∞.]
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(a) Specify for which range of κ values SLEκ is simple, is self-intersecting but not space-
filling, and is space-filling.

(b) Prove that SLEκ is simple for the range of κ values that you have specified. [You may
use properties of Bessel processes proved in class provided you state them clearly.]

(c) Suppose that γ is an SLE4 in H from 0 to ∞, let (gt) be its asociated Loewner flow,
and Ut its Loewner driving function. Fix z ∈ H.

(i) Prove that log(gt(z)− Ut) is a continuous local martingale.

(ii) Deduce that the probability that γ passes to the right of z is given by 1
π arg(z).

[You may assume that z is a.s. not in the range of γ.]

(d) Suppose that γ is a simple curve in H from 0 to ∞ which is parameterized by capacity.
Let Ut be its Loewner driving function, (gt) be the associated family of conformal maps,
and Ft = σ(γ(s) : s 6 t) = σ(Us : s 6 t). Assume that log(gt(z) − Ut) is a (Ft)-local
martingale for every z ∈ H.

(i) Show that Ut is a semimartingale.

(ii) Deduce that γ is an SLE4. [Hint: apply Itô’s formula to log(gt(z)−Ut), use that
the drift term must vanish for every z ∈ H, and examine the behavior of the drift
term for z ∈ H \ γ([0, t]) close to γ(t).]
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4 Let Q± be the set of compact H-hulls A with 0 /∈ A and for each A ∈ Q± let ψA be
the unique conformal transformation H\A→ H with ψA(0) = 0 and limz→∞ ψA(z)/z = 1.
Let γ be an SLE8/3 in H from 0 to ∞.

(a) State what it means for the law of γ to satisfy the restriction property.

(b) Prove that the law of γ satisfies the restriction property if the following is true. There
exists α > 0 so that for every A ∈ Q± we have that

P[γ ∩A = ∅] = (ψ′

A(0))
α.

(c) Let Ut be the Loewner driving function for γ, (gt) the associated family of conformal
maps, A ∈ Q±, g̃t = gψA(γ[0,t]), and ψt = g̃t ◦ ψA ◦ g−1

t . Let Mt = (ψ′
t(Ut))

α and
τ = inf{t > 0 : γ(t) ∈ A}. Prove for a choice of α you should identify that Mt∧τ is a
continuous local martingale. [You may use without proof the formula

(∂tψt)
′(Ut) := lim

z→Ut

∂tψ
′

t(z) =
(ψ′′

t (Ut))
2

2ψ′
t(Ut)

− 4

3
ψ′′′

t (Ut) .
]

Explain further whyMt∧τ is in fact a bounded martingale. [You may use results from
lectures provided you state them clearly.]

(d) Compute the probability of:

(i) γ[0,∞) ∩ (H ∩B(1, ǫ)) = ∅ for ǫ ∈ (0, 1).

(ii) γ[0,∞) ∩ (1, 1 + iǫ] = ∅ for each ǫ > 0.
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