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1 LetH1, . . . ,Hm be a sequence of null hypotheses with associated p-values p1, . . . , pm.
Let I ⊆ {1, . . . ,m} be the indices corresponding to the set of true null hypotheses. What
does it mean for a multiple testing procedure to control the familywise error rate (FWER)
at level α?

Consider the procedure that sets R = min{j : pj > α} and rejects hypotheses
H1, . . . ,HR−1 if R > 1, rejects all hypotheses if R is not defined (so pj 6 α for all j), and
rejects no hypotheses if R = 1. Prove that the FWER is controlled at level α.

Suppose random variables Z1, . . . , Zp have joint distribution P . What does it mean
for P to satisfy the global Markov property with respect to a DAG G? [You need not define
graph terminology such as d-separation in your answer.]

Define

S = {DAGs G such that P is global Markov with respect to G}.

Fix j, k ∈ {1, . . . , p} with j 6= k and let H0 be the null hypothesis that there exists G ∈ S
where nodes j and k are not adjacent. Suppose that for each S ⊆ {1, . . . , p} \ {j, k} we
have a p-value pS for the null hypothesis HS that Zj ⊥⊥ Zk|ZS . Note that H∅ should be
understood as the null hypothesis that Zj and Zk are independent. Give, with careful
justification, a non-trivial procedure for testing H0 that will falsely reject H0 with proba-
bility at most α. [You may assume without proof that every DAG has a topological order.]
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2 Given independent data x1, . . . , xn ∼ Np(µ,Σ
0) where Σ0 ∈ R

p×p is positive
definite, write down the maximum likelihood estimate Σ̂ of Σ0.

For a matrix A ∈ R
r×s, let ‖A‖1 =

∑

j,k |Ajk| and ‖A‖∞ = maxj,k |Ajk|. Also define
‖A‖L1

= maxj
∑

i |Aij | = maxj ‖Aj‖1, where Aj ∈ R
r denotes the the jth column of A.

Show that for two matrices A ∈ R
r×s and B ∈ R

s×t, ‖AB‖∞ 6 ‖A‖∞‖B‖L1
. Show also

that if r = s and A is symmetric then ‖AB‖∞ 6 ‖A‖L1
‖B‖∞.

Consider the following estimator for the precision matrix Ω0 = (Σ0)−1:

Ω̂ := argmin
Ω∈Rp×p

‖Ω‖1 subject to ‖Σ̂Ω− I‖∞ 6 λ,

for some λ > 0. Assuming there is a feasible solution to the constrained optimisation
problem above, so Ω̂ exists, show that Ω̂j is a minimiser over β of ‖β‖1 subject to
‖Σ̂β − ej‖∞ 6 λ, where ej ∈ R

p is the jth standard basis vector.

Suppose for the remainder of this question that

λ > ‖Σ̂− Σ0‖∞‖Ω0‖L1
.

Show that ‖Σ̂Ω0
j − ej‖∞ 6 λ for all j. What does this imply about how ‖Ω̂j‖1 compares

to ‖Ω0
j‖1?

Next show that ‖Σ0(Ω̂−Ω0)‖∞ 6 2λ. [Hint: consider subtracting and adding Σ̂Ω̂.]

Finally show that ‖Ω̂−Ω0‖∞ 6 2λ‖Ω0‖L1
.

3 Let X be a (non-empty) input space. What is a positive definite kernel? In the
remainder of this question we will refer to a positive definite kernel as simply a kernel.

Show that if H is an inner product space and φ : X → H is a feature map, then
k : X × X → R defined by

k(x, x′) = 〈φ(x), φ(x′)〉
is a kernel.

Show that if k1, k2, . . . are kernels on input space X , then

1. α1k1 + α2k2 is a kernel for α1, α2 > 0;

2. if k(x, x′) := limm→∞ km(x, x′) exists for all x, x′ ∈ X then k is a kernel;

3. if k(x, x′) := k1(x, x
′)k2(x, x

′) for all x, x′ ∈ X then k is a kernel.

Write down the equation for the Gaussian kernel on R
d with bandwidth σ2. Show

that it is a positive definite kernel.
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4 Let f : Rd → R be a convex function. What is meant by a subgradient of f at a
point x ∈ R

d? State a result concerning minimisation of f and subgradients. Write down
the subdifferential of the absolute value function | · | at each x ∈ R.

Explain the procedure of coordinate descent for minimising f .

Consider performing a Lasso regression with centred response Y ∈ R
n and design

matrix X ∈ R
n×p with centred columns scaled to have ℓ2-norm

√
n. Write down the

optimisation problem solved by the Lasso with tuning parameter λ > 0.

Given an initialiser β̂(0) ∈ R
p for coordinate descent minimisation of the Lasso

objective function, show that the next iterate β̂(1) ∈ R
p satisfies

β̂
(1)
1 = Sλ(R/n),

where Sλ(t) = max(|t| − λ, 0)sgn(t) and R ∈ R is a function of Y,X and β̂(0) that you
should specify.

Now consider minimising

Q(β) =
1

2n
‖Y −Xβ‖22 + λ

p
∑

j=1

ρ(βj)

where

ρ(t) = |t|1{|t|6δ} +
t2 + δ2

2δ
1{|t|>δ}.

By considering the KKT conditions of the coordinatewise minimisation or otherwise, show
that given an initialiser β̂(0) ∈ R

p for coordinate descent minimisation of Q, the next iterate
β̂(1) ∈ R

p satisfies

β̂
(1)
1 =

{

Sλ(R/n) if |Sλ(R/n)| 6 δ
R/n

1+λ/δ otherwise.

[In this question you may use standard results about subgradients and subdifferentials

without proof.]
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5 For a symmetric positive semi-definite matrix Σ ∈ R
p×p and non-empty set

S ⊂ {1, . . . , p} (where the inclusion is strict), we define the compatibility factor

φ2
Σ(S) = inf

β:‖βS‖1 6=0,‖βN‖163‖βS‖1

βTΣβ

‖βS‖21/|S|
,

where N := {1, . . . , p} \ S. Prove that if symmetric positive semi-definite matrices
Θ,Σ ∈ R

p×p have maxj,k |Σjk −Θjk| 6 φ2
Σ(S)/(32|S|) then φ2

Θ(S) > φ2
Σ(S)/2.

What does it mean for a random variableW ∈ R to be sub-Gaussian with parameter
σ > 0? State an upper bound on P(W > t) for t > 0 in the case where additionally
EW = 0.

Now suppose matrix X ∈ [−1, 1]n×p has independent rows with E(Xij) = 0 and
E(XijXik) = Σjk for all i, j, k and positive definite matrix Σ. Let Σ̂ = XTX/n. Show that

P(max
j,k

|Σ̂jk − Σjk| > 4
√

2 log(p)/n) 6
2

p2
.

[You may use without proof the fact that if random variable W with EW = 0 takes values
in [−2, 2] then W is sub-Gaussian with parameter 2.]

Let cmin be the minimum eigenvalue of Σ. State a result concerning the rela-
tive sizes of cmin and φ2

Σ(S) for non-empty S ⊆ {1, . . . , p}. From the results above,
give a condition on cmin involving s, n and p such that when this holds, we have with
probability at least 1 − 2p−2 that φ2

Σ̂
(S) > cmin/2 for all S with 0 < |S| 6 s < p.
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6 Given a response Y ∈ R
n and design matrix X ∈ R

n×p consider the regression
estimator

β̂ = argmin
β∈Rp

1

2n
‖Y −Xβ‖22 + λ‖β‖1 +

γ

2
‖β‖22, (∗)

where λ > 0 and γ > 0 are tuning parameters. Briefly explain why the minimising β̂,
which you may assume exists, is unique. In the case where X has two duplicate columns,
argue that the corresponding coefficient estimates will be equal.

Write down the KKT conditions for the optimisation problem (∗).
Now consider the noiseless linear model, Y = Xβ0. Let S = {j : β0

j 6= 0}. Show

that if sgn(β0) = sgn(β̂), then

‖XT
NXS(X

T
S XS + nγI)−1{γβ0

S/λ+ sgn(β0
S)}‖∞ 6 1. (∗∗)

Show further that if (∗∗) holds and also

sgn(β0
S) = sgn

(

(XT
S XS + nγI)−1(XT

S XSβ
0
S − λsgn(β0

S))
)

,

then we have sgn(β̂) = sgn(β0).

END OF PAPER
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