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1

Let X be a given an n-dimensional random vector. Throughout this question, you
may not use a fundamental theorem of asset pricing without proof.

(a) Suppose that H ∈ Rn is such that H · X > 0 almost surely and P(H · X > 0) > 0.
Prove that there does not exists a positive random variable ρ such that E(ρ) = 1 and
E(ρX) = 0.

Given a positive random variable ζ, define a function F on Rn by

F (h) = E[e−h·Xζ].

Suppose F is everywhere finite and smooth. Let

f = inf
h∈Rn

F (h).

A sequence (hk)k such that F (hk) → f is called a minimising sequence.

(b) Suppose there exists a bounded minimising sequence. Show that there exists a positive
random variable ρ such that E(ρ) = 1 and E(ρX) = 0.

(c) Suppose every minimising sequence is unbounded. Show that there exists a vector
H ∈ Rn such that H ·X > 0 almost surely and P(H ·X > 0) > 0.

(d) Suppose that there exists a unique positive random variable ρ such that E(ρ) = 1 and
E(ρX) = 0. Show that every random variable Y is of the form Y = a+ b ·X for constants
a ∈ R and b ∈ Rn. [Hint: Use part (b) twice with ζ = ecY−Y 2−‖X‖2 for c = 0 and c = 1.]
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2 Let S be a positive random variable such that E(S) = 1. Let X, Y and Z have the
unit exponential fX(x) = e−x1{x>0}, Cauchy fY (y) =

1
π (y

2 + 1)−1 and standard normal

fZ(z) =
1√
2π
e−z2/2 densities, respectively.

(a) Prove that
M(θ) = E(eθ logS)

is well-defined and bounded for all θ ∈ {p+ iq : 0 6 p 6 1, q ∈ R}, where i =
√
−1.

(b) Compute M(θ) in the case where S = (1 + t)e−tX , for a constant t > 0.

(c) Prove the identity

E[(S −K)+] = 1−
√
KE

[

M
(

1
2(1 + iY )

)

e−
1
2 iY logK]

for all K > 0.

Explain briefly why the above identity is useful in the context of a stochastic volatility
model such as the Heston model. You may use without proof the identity

E(eiY t) = e−|t| for all t ∈ R.

(c) Let G(S) = e−
1
2 (logS)

2

. Prove that

E[G(S)] = E[M(iZ)]

where Z ∼ N(0, 1). You may use without proof the identity

E(eitZ) = e−t2/2.
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Consider a continuous time model of a market with two assets with positive prices
(B,S) where

dBt =Bt rt dt,

dSt =St(µt dt+ σt dWt),

where each of the processes r, µ and σ are adapted, positive and continuous, and where
W is a Brownian motion which generates the filtration F .

(a) Let Y be a local martingale deflator with Y0 = 1. Show that

dYt = −Yt(rt dt+ λt dWt)

for an adapted, continuous process λ to be determined in terms of the given processes r,
µ and σ.

(b) Fix a non-random T , and let ξT be a non-negative, bounded FT -measurable ran-
dom variable. Show that there exists an admissible pure-investment trading strategy
(φt, πt)06t6T such that φTBT + πTST = ξT almost surely. Show that the minimal initial
cost among all such replication strategies is

φ0B0 + π0S0 = E(YT ξT )

where Y is the local martingale deflator from part (a). [You may use standard results
from stochastic calculus if clearly stated.]

Now suppose that r, µ and σ are positive constants, and suppose that the payout of
the claim in part (b) is of the form ξT = g(ST ). Let (φ, π) be the minimal cost replicating
portfolio.

(c) Show that there exists a function V : [0, T ]× R+ → R+ with the property that

V (t, St) = φtBt + πtSt for all 0 6 t 6 T.

(d) Assuming that the function V in part (c) is smooth, show that there is a function Ṽ

with the property that πt = Ṽ (t, St). How is Ṽ related to V ?
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4 Consider a discrete-time market with n assets with (possibly negative) prices
(Pt)t>0.

(a) What is an investment-consumption arbitrage? What is a terminal-consumption
arbitrage?

(b) What is a numéraire strategy? Prove that if the market has an investment-consumption
arbitrage and a numéraire strategy, then the market has a terminal consumption arbitrage.

(c) Suppose there exists a non-negative adapted process (Zt)t>0 such that

P(Zt = 0 for all t) = 0

and such that the process M defined by

Mt = (−1)tZtPt

is a martingale. Prove that the market has no numéraire strategies.

[You may use without proof the standard properties of local martingales discussed in lec-
tures. You may also also use the fact that if (Xt)t>0 is a local martingale with respect to a
filtration (Ft)t>0 then (Xtk)k>0 is a local martingale with respect to the filtration (Ftk)k>0

for any increasing (non-random) sequence (tk)k>0.]

5 Consider a discrete-time market model with prices (P T
t )t∈[0,T ],T>1 where P T

t is the
price at time t of a risk-free zero-coupon bond of unit face value and maturity T . Assume
that the prices are adapted to a filtration (Ft)t>0, and that the market is free of arbitrage.

(a) Explain why P T
t > 0 almost surely for all 0 6 t 6 T .

(b) Define the spot interest rate rt in terms of the bond prices. Define the bank account
Bt in terms of the spot interest rate. What does it mean to say a probability measure Q

is a risk-neutral measure for this model?

(c) Show that T 7→ P T
t is non-increasing almost surely for all t if and only if rt > 0 almost

surely for all t > 0.

(d) Suppose the spot interest rate (rt)t>1 evolves as

1 + rt = ζt−1(1 + rt−1)

where where (ζt)t>1 is a sequence of positive independent and identically distributed
random variables generating the filtration (Ft)t>0. For exponents n ∈ Z, let

M(n) = EQ(ζn1 )

for a fixed risk-neutral measure Q, and assume M is finite-valued. Compute the bond
price P T

t in terms of the function M .
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6 Consider a market with two assets, a bank account with time-t price ert and a stock
whose price dynamics satisfy

dSt = St(r dt+
√
vtdWt)

dvt = (a− bvt)dt+ c
√
vt(ρdWt +

√

1− ρ2dZt)

where r, a, b, c and ρ are contants, with a, b > 0 and −1 6 ρ 6 1, and W and Z are
independent Brownian motions.

Let F : [0, T ]× R+ × R+ → R+ satisfy the partial differential equation

∂F

∂t
+ Sr

∂F

∂S
+ (a− bv)

∂F

∂v
+

1

2
S2v

∂2F

∂S2
+ cρSv

∂2F

∂S∂v
+

1

2
c2v

∂2F

∂v2
= rF

with boundary condition F (T, S, v) =
√
S.

Introduce a contingent claim with time-T payout ξT =
√
ST .

(a) Show that there is no arbitrage relative to the bank account in the augmented market
consisting of the bank account, stock and contingent claim, if the time-t price of the
contingent claim is given by ξt = F (t, St, vt). You may use a fundamental theorem of asset
pricing as long as it is stated carefully.

Suppose that F (t, S, v) =
√
SeA(t)v+B(t) for some functions A,B : [0, T ] → R.

(b) Show that A satisfies an ordinary differential equation. You should derive the equation,
including the boundary conditions, but need not solve it.

(c) Show that the function B is given by

B(t) = −1
2(T − t)r + k

∫ T

t
A(s)ds

for a constant k which you should find in terms of the model parameters.

END OF PAPER
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