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(a) Consider the classical action S[φ] for a scalar field in d dimensions. Write down
a generating functional Z[J ] for quantum expectation values, along with an example of
how it is used.

(b) In a few sentences and equations, explain the relation between the action S[φ],
the Wilsonian effective action W [J ], and the quantum effective action Γ[Φ], including
definitions of J and Φ.

(c) Given that Z[J ] may be expressed in a perturbative expansion as a sum of
Feynman diagrams, how can W [J ] and Γ[Φ] be expressed in perturbative expansions?
Justify your answers mathematically.

(d) Consider a real scalar field in 0-dimensions (i.e. φ is a real number) with action
S(φ). Writing φ = φ0 + η, we define an effective action for a particular φ0 as

W (J ;φ0) ≡ −~ log

∫

dη exp

[

−
1

~
(S(φ0 + η) + Jη)

]

.

Given some field χ, define Jχ through

∂W (J ;φ0)

∂J

∣

∣

∣

∣

J=Jχ

= χ .

Finally let Γ(χ;φ0) be the Legendre transform of W (Jχ;φ0). Working nonperturbatively
show that

Γ(η;φ0) = Γ(φ0 + η; 0)

where Γ(φ0 + η; 0) = Γ(φ).
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Consider the following interacting scalar field theory in 4 Euclidean dimensions with
a momentum cutoff Λ0:

SΛ0
[φ] =

∫

d4x

(

1

2
∂µφ∂

µφ+
1

2
m2

0φ
2 +

h0

3!
φ3 +

g0

4!
φ4

)

.

The partition function is written as

ZΛ0
(m2

0, h0, g0) =

∫ Λ0

Dφ e−SΛ0
[φ]

where this should be interpreted as a functional integral over momentum modes φ̃(p) of φ
with momentum satisfying p2 6 Λ2

0.

(a) How is the effective action Seff
Λ [φ] at a lower scale Λ 6 Λ0 defined? Show that

Seff
Λ [φ] = SΛ0

[φ]− log

[
∫ Λ0

Λ
Dφ+ exp

(

−∆S[φ, φ+]
)

]

where the meaning of φ+ should be explained. Give an expression for ∆S[φ, φ+] for cases
(i) h0 6= 0 and (ii) h0 = 0.

(b) By expressing a generic effective action as a series of terms, each of dimension
di and consisting of ni fields,

Seff
Λ [φ] =

∫

d4x

[

ZΛ

2

(

∂µφ∂
µφ+m2(Λ)φ2

)

+
∑

i

Z
ni/2
Λ

Λdi−4
gi(Λ)Oi(x)

]

obtain the Callan-Symanzik equation governing the Λ-dependence of these couplings.

(c) Obtain a Callan-Symanzik equation for the 4-point function Γ
(4)
Λ

(

x1, x2, x3, x4;m
2, gi(Λ)

)

.

(d) In a few paragraphs, explain what is meant by “the continuum limit” and
possible behaviours theories may exhibit in this limit.
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The Feynman-gauge QED action in d Euclidean spacetime dimensions is S =
∫

ddxL
where

L =
1

4
FµνF

µν + ψ̄(/D +m)ψ +
1

2
(∂µA)(∂

µA)

where /D = γµ(∂µ − ieAµ) and Fµν = ∂µAν − ∂νAµ.

(a) Let SF (/p) = (i/p +m)−1 be the free fermion propagator and G(/p) be the exact
fermion propagator

G(/p) =

∫

d4x e−ip·(x−y)〈ψ(x)ψ̄(y)〉 .

Denote by Σ(/p) the fermion self-energy, that is, the sum of one-particle irreducible diagrams
with 2 external, amputated fermion legs. How can G(/p) be written in terms of SF (/p) and
Σ(/p)? What is the relationship between the exact propagator and the physical fermion
mass mphys?

(b) Draw the one-loop Feynman diagram which contributes to Σ(/p). With just a
few words and no lengthy mathematical derivations, explain why this contribution can be
written in 4 Euclidean dimensions as follows

Σ(/p) = (−ie)2
∫

d4k

(2π)4
γµ

−i/k +m

k2 +m2
γµ

1

(p − k)2
.

(c) Working in d = 4− ǫ dimensions, discuss the dimensions carried by the coupling
e (in units where ~ = c = 1).

[QUESTION CONTINUES ON THE NEXT PAGE]
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(d) Show that the integral above can, in d dimensions, be expressed as

Σ(/p) = −
e2

(4π)d/2
Γ
( ǫ

2

)

∫ 1

0
dx

C /p+ Fm

∆ǫ/2

where you should determine C, F and ∆. C and F depend on x and ǫ, and ∆ depends on
x, p2, and m2. [Hint: Use the identities at the end of the question. Ignore the divergence
as k → 0.]

(e) Expand Σ(/p) about ǫ = 0 in order to identify the divergent and finite terms. In
either the minimal subtraction (MS) or modified minimal subtraction (MS) schemes write
down the 1-loop contribution to the renormalized mass and relate the renormalized mass
m to the physical fermion mass mphys. [Hint: Use your answer to Part (b). You do not
need to evaluate any remaining integral over a Feynman parameter x.]

[Useful identities:
1

AB
=

∫ 1

0

dx

[xA+ (1− x)B]2
.

In d dimensions

γµγµ = d

γµγνγµ = (2− d)γν .

For appropriate integrands, one can perform the angular integrals by directly replacing

ddℓ

(2π)d
→

(ℓ2)
d
2
−1 dℓ2

(4π)
d
2Γ(d2)

.

The following integral may be used without proof

∫ ∞

0

(ℓ2)
d
2
−1 dℓ2

(ℓ2 +∆)2
=

(

1

∆

)2− d
2 Γ(2− d

2)Γ(
d
2 )

Γ(2)
.

The expansion of the Γ function near zero is

Γ(ǫ) =
1

ǫ
− γ +O(ǫ)

where γ is the Euler-Mascheroni constant.]
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Consider an SU(N) gauge theory with Lagrangian

Sg =

∫

d4x
1

4
TrFµνF

µν

where F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν , and f

abc are the structure constants appearing

in the Lie algebra, [ta, tb] = ifabctc.

(a) Define a Wilson line U(y, x) to be an SU(N) element depending on two
spacetime points with the properties: (i) Under a gauge transformation V (x) ∈ SU(N),
U(y, x) 7→ V (y)U(y, x)V †(x); (ii) For small a and a unit vector n, U(x + an, x) =
1 + iganµAa

µt
a + O(a2). Show that under an infinitesimal gauge transformation, V (x) =

1 + iαa(x)ta,

Aa
µ 7→ (Aα)aµ = Aa

µ +
1

g
∂µα

a + fabcAb
µα

c .

(b) Given a gauge-fixing condition G[A] = 0, use the identity

1 =

∫

Dα(x) δ(G[Aα]) det

(

δG[Aα]

δα

)

to show that, for Lorenz gauge ∂µAa
µ = 0, the action can be written as

S = Sg +

∫

d4x

[

1

2ξ
(∂µAa

µ)
2 + c̄ ∂µDµc

]

,

where c and c̄ are anticommuting ghost fields and you should find an expression for Dµ.

(c) Using the action from Part (b), show that the Feynman rule for the momentum-
space gauge boson propagator is equal to

1

k2

(

Xδµν + Y
kµkν

k2

)

where you should determine X and Y .

(d) In a few sentences, explain (i) Why gauge-fixing is necessary for path-integral
quantization of gauge fields; (ii) What role is played by the fields c and c̄ above.

(e) Show that it is not necessary to introduce ghosts for the gauge-fixing condition
n ·Aa, where n is a constant unit vector.

END OF PAPER
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