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You are reminded of the equations of ideal magnetohydrodynamics in the form

∂ρ

∂t
+∇ · (ρu) = 0, (1)

∂p

∂t
+ u · ∇p+ γp∇ · u = 0, (2)

ρ

(

∂u

∂t
+ (u · ∇)u

)

= −ρ∇Φ−∇p+
1

4π
(∇×B)×B, (3)

∂B

∂t
= ∇× (u×B) , (4)

∇2Φ = 4πGρ. (5)

Conservation laws for momentum

∂(ρu)

∂t
+∇ · Π̂ = 0, Π̂ij = ρuiuj +

(

p+
B2

8π

)

δij −
BiBj

4π
, (6)

and energy

∂

∂t

[

ρ

(

u2

2
+ e

)

+
B2

8π

]

+∇ ·

[

ρu

(

u2

2
+ h

)

+ c
E×B

4π

]

= 0. (7)

You may assume that for any scalar function f

∇f =
∂f

∂R
eR +

1

R

∂f

∂φ
eφ +

∂f

∂z
ez (cylindrical coordinates) (8)

∇f =
∂f

∂r
er +

1

r

∂f

∂θ
eθ +

1

r sin θ

∂f

∂φ
eφ (spherical coordinates). (9)

You may assume that for any vector C

(∇×C)×C = (C · ∇)C−
1

2
∇

(

|C|2
)

, (10)

and in cylindrical coordinates

∇ ·C =
1

R

∂(RCR)

∂R
+

1

R

∂Cφ

∂φ
+

∂Cz

∂z
, (11)

∇×C =

(

1

R

∂Cz

∂φ
−

∂Cφ

∂z

)

eR +

(

∂CR

∂z
−

∂Cz

∂R

)

eφ +
1

R

[

∂(RCφ)

∂R
−

∂CR

∂φ

]

ez.(12)

For any two vectors C and D

∇× (C×D) = C(∇ ·D) + (D · ∇)C−D(∇ ·C)− (C · ∇)D, (13)

∇ · (C×D) = D · (∇×C)−C · (∇×D). (14)

You may refer to these formulae in your solutions, but, please, make sure to provide
sufficient details when using them.
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1

In a magnetohydrodynamic (MHD) flow the density of cross-helicity hc is defined as
hc = u ·B.

(a) Show that in ideal MHD the evolution of hc can be described by an equation in the
following form:

∂

∂t
(u ·B) +∇ · F = Qh,

without making assumptions about the spatial distribution of entropy s. Here F is the
flux of cross-helicity and Qh is the source term (contributions that cannot be absorbed in
∇ · F). Derive an explicit expression for F.

(b) Derive an explicit expression for Qh and state the conditions under which Qh = 0.

(c) Find the condition under which cross-helicity is conserved in the Lagrangian sense
in a steady-state, isentropic flow, i.e.

d

dt
(u ·B) = 0.

State this condition in terms of the magnetic field B, velocity u, gravitational potential Φ
and thermodynamic properties of the flow.
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2

(a) Consider a one-dimensional flow in a polytropic gas with adiabatic index γ. A
stationary shock at z = 0 separates region 1 (z > 0, where ρ = ρ1, p = p1 and u = u1)
from region 2 (z < 0, where ρ = ρ2, p = p2 and u = u2). Derive the jump conditions
across the shock (Rankine-Hugoniot relations) in the form

ρ1u1 = ρ2u2,

p1 + ρ1u
2

1
= p2 + ρ2u

2

2
,

u1

(

ρ1
u2
1

2
+

γp1
γ − 1

)

= u2

(

ρ2
u2
2

2
+

γp2
γ − 1

)

.

Provide physical motivation for these relations.

(b) Use these jump conditions to derive the expression for the density ratio D = ρ2/ρ1
in terms of the pressure ratio P = p2/p1.

(c) Using the results of part (b) compute [s]/cv in terms of P . Here [s] = s2 − s1 is the
entropy difference before (s1) and after (s2) the shock, and cv is the specific heat capacity.

(d) Consider the limit of a weak shock such that P = 1 + δ, δ ≪ 1. Calculate [s]/cv in
this limit to the lowest non-zero order in δ.

(e) Use the results of part (d) to determine which would raise the gas entropy more: (i)
a single strong shock with pressure ratio Ps ≫ 1 or (ii) multiple successive weak shocks
resulting in the same ultimate increase of pressure (i.e. the pressure after passage of the
last weak shock divided by the pressure before the passage of the first weak shock is again
equal to Ps ≫ 1). For simplicity assume that all weak shocks have the same pressure ratio
Pw = 1 + δ, δ ≪ 1.
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3 Consider an axisymmetric magnetostatic configuration of ideal plasma, in which
both thermal pressure p as well as stresses due to magnetic field B play important
roles. This configuration has a cylindrical symmetry such that all its characteristics are
independent of the z-coordinate along the axis of rotational symmetry. Gravity can be
ignored for this problem.

(a) Describe the behavior of the radial (cylindrical R) components, BR and jR, of the
magnetic field and current density in this configuration, assuming regularity of all variables
on the z axis.

(b) Derive a (differential) equation relating the thermal pressure p, the z-component of
the magnetic field Bz, and the current I(R) enclosed within radius R,

I(R) = 2π

∫ R

0

jzRdR, (1)

(where jz is the z-component of the current density) for this configuration.

(c) Assume now that Bz is constant everywhere in space, and that

p(R) = p0

(

1 +
R2

a2

)

−k

, (2)

where p0, a, k are constants. Using the equation derived in part (b), compute the profile
of I(R). What condition should be imposed on k for the current I(R) to remain finite as
R → ∞?

(d) Now assume instead that vertical current is zero everywhere, I(R) = 0. Assume
pressure behaviour in the form

p(R) = p0 exp
(

−R2/a2
)

, (3)

and that Bz(R = 0) = 0. Using again the equation derived in part (b), determine the
radial profiles of Bz and of the toroidal component of the current density jφ. What is the
value of jφ(R → 0)?
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4 Consider accretion of ionized gas from the interstellar medium with density ρ0 and
sound speed c0 onto a magnetized, non-rotating, and non-moving neutron star of mass M⋆

and radius R⋆. The magnetic field has a dipolar geometry, i.e.

B =
3(m · r)r−mr2

r5
, (1)

where m is the vector magnetic moment of the neutron star. The magnetic field of the
neutron star is very strong and can be considered as unperturbed by external stresses
in the region of interest. It regulates the accretion of gas to occur only along the field
lines very close to the magnetic axis, which subtend the angle θ < θ⋆ ≪ 1 in spherical
coordinates aligned with the magnetic axis (only these field lines get loaded with the gas
at large distances, far outside the region of interest).

Assume that the gas is isentropic, with pressure p and density ρ related via p = Kργ ,
when K and γ are constants. Upon reaching the neutron star surface the accreted gas
gets freely absorbed (i.e. there is no back reaction on the incoming flow).

(a) By solving for the shape of field lines, or otherwise, determine how the cross-section
of the flux tube along which accretion occurs changes as a function of distance from the
neutron star centre. You may assume that you stay close to the magnetic axis.

(b) Argue that, when θ⋆ ≪ 1, gas accretion along field lines can be considered as a one-
dimensional hydrodynamical problem. Formulate the equations describing this problem
in steady-state, accounting for the gas pressure and neutron star gravity. For simplicity,
assume that magnetic stresses can be neglected.

(c) By analysing the equations derived in part (b), demonstrate that they adopt transonic
solutions for γ less than some critical value, which you should determine.

(d) In the transonic case, determine the distance to the sonic surface as well as the
values of the sound speed and density at this location. Calculate the mass accretion rate
Ṁ onto the neutron star in this setup, i.e. along the field lines loaded with gas.

(e) Using the results obtained so far, suggest a constraint on θ⋆ that has to be satisfied
for the transonic flow to be described by the one-dimensional equations derived in part
(b).

END OF PAPER
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