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(a) Accretion on to a black hole of massM is sometimes modelled using Newtonian physics
in the gravitational potential

Φ = − GM
(√

r2 + z2 − 2Rg

) ,

where (r, φ, z) are cylindrical polar coordinates and Rg = GM/c2 is the gravitational

radius.

Calculate the orbital frequency Ω(r), specific angular momentum h(r), specific energy
ε(r), orbital shear parameter q(r) and epicyclic frequency κ(r) of circular orbits of
radius r > 2Rg in this potential. Deduce that these orbits are unstable for r < rin,
where rin = 6Rg. Show that the specific energy of a circular orbit of radius rin is −ηc2,
where η = 1/16.

(b) The one-dimensional evolutionary equations for an accretion disc are

∂M

∂t
+

∂F

∂r
= 0 ,

∂

∂t
(Mh) +

∂

∂r
(Fh + G ) = 0 ,

where M is the mass per unit radius, F is the radial mass flux and G is the internal
torque. Show that the solution for a steady accretion disc with accretion rate Ṁ and
zero torque at r = rin, in the potential considered in part (a), has vertically integrated
viscosity

ν̄Σ =
fṀ

3π
,

where

f =
(x− 2)

(x− 2
3
)

[

1− 3
√
3√
2

(x− 2)

x
√
x

]

,

with x = r/Rg.

Explain why a zero-torque boundary condition is appropriate at r = rin, and why
the total luminosity of the steady accretion disc can be expected to be Ldisc = ηṀc2,
where η is the quantity calculated in part (a), if the advection of heat into the black
hole can be neglected.

[QUESTION CONTINUES ON THE NEXT PAGE]
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(c) The vertical structure of the disc in a steady state is governed by the equations

dp

dz
= −ρΩ2z ,

dFz

dz
= ρν

(

r
dΩ

dr

)2

,

Fz = −16σT 3

3κρ

dT

dz
,

p =
RρT

µ
+

4σT 4

3c
,

where the symbols have their usual meanings.

Assume that the opacity, κ, and the ratio of radiation pressure to gas pressure, β, are
independent of z. Show that the effective viscosity ρν is equal to

(

β

1 + β

)

1

q2
c

κ
,

where q is the orbital shear parameter.

The Eddington luminosity LE and the Eddington accretion rate ṀE are defined by
ηṀEc

2 = LE = 4πGMc/κ, where η is the quantity calculated in part (a). Show that
the full vertical thickness of the steady accretion disc is

64

3

(

1 + β

β

)

q2f
Ṁ

ṀE

GM

c2
.
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(a) Write down, in terms of cylindrical polar coordinates (r, φ, z), the Lagrangian of a
particle of unit mass in a gravitational potential Φ(r, z) that is axisymmetric and has
reflectional symmetry in the midplane z = 0.

By introducing local coordinates (x, y, z) in the neighbourhood of a reference point
that is in a circular orbit of radius r0 and angular velocity Ω0 in the midplane, develop
the Lagrangian to second order to obtain the expression

L2 =
1

2

(

ẋ2 + ẏ2 + ż2
)

+ 2Ω0xẏ − Φt ,

where the tidal potential Φt is a quadratic function of x and z. Express Φt in terms
of Ω0 and the partial derivatives of Φ evaluated on the reference orbit.

(b) Derive the equations of motion of the particle in this local model using the quadratic
Lagrangian and show that the general solution in the case of a point-mass potential is

x = x0 +Re
(

Ae−iΩ0t
)

,

y = y0 −
3

2
Ω0x0t+Re

(

−2iA e−iΩ0t
)

,

z = Re
(

B e−iΩ0t
)

,

where x0 and y0 are real constants and A and B are complex constants.

Interpret the following three quantities that are conserved in this motion:

py =
1

2
Ω0x0 ,

εh =
1

2
Ω2
0

(

|A|2 − 3

4
x20

)

,

εv =
1

2
Ω2
0|B|2 .

(c) A dense planetary ring can be modelled, in this local approximation, by a large number
of spherical particles of equal size and mass. Neglect gravitational interactions between
the particles but assume that they undergo inelastic physical collisions with each other,
in which momentum is conserved but kinetic energy is dissipated. Suppose that the
particles are placed on circular orbits in the midplane, with initial positions (x0, y0)
distributed randomly in the region −a < x0 < a. The particles are sufficiently closely
packed that collisions occur. Using the results of part (b), or otherwise, explain why
the ring spreads symmetrically in the ±x directions.
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(a) Consider, within the local model of astrophysical discs, a homogeneous, incompressible
disc threaded by a vertical magnetic field, in ideal magnetohydrodynamics. For
solutions that are horizontally invariant and have no vertical motion, derive the
equations

∂vx
∂t

− 2Ωvy =
Bz

µ0ρ

∂Bx

∂z
,

∂vy
∂t

+ (2− q)Ωvx =
Bz

µ0ρ

∂By

∂z
,

∂Bx

∂t
= Bz

∂vx
∂z

,

∂By

∂t
+ qΩBx = Bz

∂vy
∂z

,

where v is the departure from the orbital motion.

(b) Assume that the disc occupies the region |z| < z+, with negligible density outside.
Obtain the equilibrium solution corresponding to the boundary conditions Bx = ±B+

x

and By = 0 at the upper and lower surfaces z = ±z+, respectively, where B+
x is a

constant.

(c) Derive the dispersion relation

(

s2 + ω2
a

) (

s2 + ω2
a − 2qΩ2

)

+ 4Ω2s2 = 0

for perturbations to this equilibrium, where s is the growth rate and ωa is a quantity
to be defined. Deduce that the equilibrium solution obtained in part (b) is unstable if

0 <
π2B2

z

8qµ0ρz+2Ω2
< 1 .

(d) Show that, if the equilibrium is unstable, then it involves a magnetic field that bends
non-monotonically, in the sense that |Bx| does not increase monotonically from the
midplane to the surfaces.

[The ideal MHD equations for a homogeneous incompressible fluid in an inertial
frame of reference have the form

∂u

∂t
+ u · ∇u = −∇Φ− 1

ρ
∇Π+

1

µ0ρ
B · ∇B ,

∂B

∂t
+ u · ∇B = B · ∇u ,

∇ · u = ∇ ·B = 0 ,

where Π = p+
|B|2
2µ0

.]
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