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1 Let the real valued function u(x, y) satisfy the Laplace equation

uxx + uyy = 0,

in the first quadrant of the (x, y) plane, namely in the domain 0 < x < ∞, 0 < y < ∞,
together with the boundary conditions

uy(0, y) = g1(y), 0 < y < ∞, ux(x, 0) = g2(x), 0 < x < ∞,

where g1(y) and g2(x) are given functions which decay for large y and x, respectively.

Express the derivative uz, z = x + iy as an integral representation of g1(y) and
g2(x).

2 Let u(x, t) satisfy the equation

ut = uxx + βux, 0 < x < L, 0 < t < T,

and the initial-boundary conditions

u(x, 0) = u0(x), 0 < x < L,

ux(0, t) = g(t), 0 < t < T,

ux(L, t) = h(t), 0 < t < T,

where β, L and T are given positive constants, the given functions u0, g and h have
sufficient smoothness, u̇0(0) = g(0), and u̇0(L) = h(0).

Obtain an integral representation for the solution u(x, t) in terms of u0(x), g(t) and
h(t).

3 Let u(x, t) satisfy the equation

ut + uxxx = 0, 0 < x < ∞, 0 < t < T,

and the initial boundary conditions

u(x, 0) = u0(x), 0 < x < ∞,

ux(0, t) = g(t), 0 < t < T,

where T is a given positive constant, the given functions u0 and g0 have sufficient
smoothness and u̇0(0) = g(0).

Obtain an integral representation for the solution u(x, t) in terms of u0(x) and g(t).
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