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(a) Given integers 1 6 k 6 n define

Pk =

{

y ∈ R
n : 0 6 yi 6 1 ∀i = 1, . . . , n and

n
∑

i=1

yi = k

}

.

Show that the extreme points of Pk can only have integer coordinates in {0, 1}. [10]

For a vector x ∈ R
n define fk(x) to be the sum of the k largest components of x. For

example f1(x) = maxi=1,...,n xi and fn(x) =
∑n

i=1
xi.

(b) Show that fk(x) can be expressed as the solution of a linear maximization program
with 2n inequality constraints and one equality constraint. The constraints of your
linear program should not depend on x; i.e., only the objective function of your
linear program can depend on x. [10]

(c) Use linear programming duality to give a minimization formulation of fk. [10]

(d) Use the previous question to show that any optimization problem of the form

minimize
x∈Rn

fk(x) subject to Ax = b

where A ∈ R
m×n, b ∈ R

m can be expressed as a linear program. [10]

(e) Repeat questions (b) and (c) with the function fk(x) replaced by Fk(X) defined on
n×n symmetric matrices X ∈ Sn as the sum of the k largest eigenvalues of X. Give
maximization and minimization formulations of Fk using semidefinite programming.
Only explain briefly the differences with respect to fk(x); you do not need to produce
detailed proofs. [10]
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Given a graph G = (V,E) with vertex set V and edge set E, the (complement)
theta number of G is defined as

ϑ̄(G) = min

{

Z00 :

[

Z00 1T

1 Z

]

� 0, Zii = 1 ∀i ∈ V, Zij = 0 ∀ij ∈ E

}

, (1)

where 1 is the vector of all-ones. In the following we will identify the vertex set V with
{1, . . . , n}.

(a) Using Schur complements, show that (1) has the following alternative formulation:

ϑ̄(G) = min {t : Uii = t− 1 ∀i ∈ V, Uij = −1 ∀ij ∈ E, U � 0} . (2)

In the remaining questions we will see how to use the solution of ϑ̄(G) to construct a
(semi) coloring of G. Recall that a k-coloring of G is a map c : V → {1, . . . , k} such
that if ij ∈ E then c(i) 6= c(j). A k-semicoloring is a map c : V → {1, . . . , k} that is a
valid coloring on at least half the vertices of the graph, i.e., there is a subset W of V with
|W | > |V |/2 such that for any i, j ∈ W and ij ∈ E we have c(i) 6= c(j).

(b) Show that if G has a 3-coloring, then ϑ̄(G) 6 3. [Hint: define an appropriate

mapping d : V → {e0, e1, e2} where e0, e1, e2 ∈ C ≃ R
2 are the third roots of unity

and consider Ui,j = 2〈d(i), d(j)〉.] [10]

(c) Assume G has a 3-coloring and let U be a solution of the semidefinite program (2).

We can factorize the matrix U
t−1

so that for all i, j ∈ {1, . . . , n},
Uij

t−1
= 〈vi, vj〉 where

v1, . . . , vn are unit vectors in R
p (i.e., ‖vi‖

2
2 = 1 for all i). Since G is 3-colorable, by

the previous question we have, for ij ∈ E, 〈vi, vj〉 = − 1

t−1
6 −1

2
.

(i) Consider a random hyperplane H = {x ∈ R
p : 〈a, x〉 = 0} with a chosen

uniformly at random from the standard normal distribution in R
p. We say

that the hyperplane H cuts the edge ij ∈ E if vi and vj lie on two different
sides of the hyperplane. Show that the probability that a random hyperplane
H cuts an edge ij is at least 2/3. [10]

(ii) We now take r random hyperplanes H1, . . . ,Hr identically and independently
distributed. The r hyperplanes Hk = {x ∈ R

p : 〈ak, x〉 = 0} (k = 1, . . . , r)
partition the space R

p into at most 2r regions. We propose a 2r-coloring
of the vertices of the graph as follows: let c : {1, . . . , n} → {−1, 1}r with
c(i) = (sign(〈ak, vi〉))k=1,...,r. Prove that the expected number of edges that
have the same color at their endpoints (i.e., the “bad” edges) is 6 (1/3)rm
where m = |E| is the number of edges, i.e., [10]

E

[

| {ij ∈ E : c(i) = c(j)} |
]

6 (1/3)rm.

(iv) Using an appropriate choice of r show how to construct a (randomized) k-
semicoloring with k = O(nγ) where γ < 1 is to be specified. [10]
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An n× n symmetric matrix A is called copositive if xTAx > 0 for all x ∈ R
n
+ where

R
n
+ = {x ∈ R

n : xi > 0 ∀i = 1, . . . , n}.

(a) Show that A is copositive if and only if the degree-four homogeneous polynomial

p(z1, . . . , zn) =
∑

16i,j6n

Aijz
2
i z

2
j .

is globally nonnegative. [10]

(b) Show that the polynomial p(z) is a sum-of-squares if and only if A can be written
as A = P + N where P is a symmetric positive semidefinite matrix and N is a
symmetric matrix whose entries are all nonnegative. [15]

(c) Consider the matrix

H =













1 −1 1 1 −1
−1 1 −1 1 1
1 −1 1 −1 1
1 1 −1 1 −1

−1 1 1 −1 1













.

By observing that

xTHx = (x1 − x2 + x3 − x4 + x5)
2 + 4x2x5 + 4x1(x4 − x5)

show that H is copositive. [10]

(d) Show that H cannot be written as H = P +N where P is positive semidefinite and
N is elementwise nonnegative. [Hint: consider xTHx where x = (1, 2, 1, 0, 0)T ]. [15]
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