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1 You should attempt all parts of this question.

a) Consider the heat equation for (t, x, y) ∈ R3

∂u

∂t
=
∂2u

∂x2
+
∂2u

∂y2
,

with the following data:

u|Σ = u0,
∂u

∂ν

∣∣∣∣
Σ

= u1,

where Σ ⊂ R3 is a real analytic hypersurface with unit normal ν, and u0, u1 : Σ→ R
are real analytic. Find a condition on Σ such that a real analytic solution to this
problem exists in a neighbourhood of Σ, clearly identifying any theorems you apply.

b) State the Lax–Milgram theorem. Explain briefly how the theorem may be used to
find solutions to the following PDE problem:

{
−∆u+ uxn + u = f in U,
u = 0 on ∂U,

where U ⊂ Rn is an open, bounded set and f ∈ L2(U) is given.
You may state without justification the weak formulation of this problem.

c) Let U, V ⊂ Rn be open with V ⊂⊂ U . For u : U → R, define the ith difference
quotient ∆h

i u(x) := h−1 [u(x+ hei)− u(x)] for x ∈ V , 0 < |h| < dist (V, ∂U),
i = 1, . . . , n.

i) Show that if u ∈ H1(U), then

∥∥∥∆h
i u

∥∥∥
L2(V )

6 ‖Diu‖L2(U) , for all 0 < |h| < 1

2
dist (V, ∂U), i = 1, . . . , n.

ii) Suppose u ∈ L2(U) satisfies

∥∥∥∆h
i u

∥∥∥
L2(V )

6 C, for all 0 < |h| < 1

2
dist (V, ∂U), i = 1, . . . , n.

Show that u ∈ H1(V ) with ‖Diu‖L2(V ) 6 C for each i = 1, . . . , n.

d) State the Rellich–Kondrachov theorem for H1(U), where U ⊂ Rn is open and
bounded, with smooth boundary. Give an example to show that the assumption
that U be bounded is necessary.

[40]
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2 You should attempt at most two from questions 2, 3, 4.

Let U ⊂ Rn be open, connected, and bounded, with smooth boundary. Let

H =

{
u ∈ H1(U) :

∫

U
u(x)dx = 0

}
.

a) Show that H is a Hilbert space when equipped with the standard H1-inner product.

b) Show that there exists a constant C > 0 such that

‖u‖L2(U) 6 C‖Du‖L2(U), for all u ∈ H.

You may assume the Rellich–Kondrachov theorem.
[Hint: assume for contradiction that the result is false, and consider a sequence
(ui)

∞
i=1 with ui ∈ H satisfying ‖ui‖L2 > i‖Dui‖L2.]

c) Suppose that there exist w ∈ H and γ > 0 such that:

‖u‖L2(U) 6 γ−
1
2 ‖Du‖L2(U), for all u ∈ H,

with equality for u = w. By considering u = w + tv for t ∈ R, v ∈ H, show that

0 6 2t [(Dw,Dv)L2 − γ(w, v)L2 ] + t2
[
‖Dv‖2L2(U) − γ‖v‖2L2(U)

]
.

Deduce that w is the weak solution to the PDE problem:




−∆w = γw in U,
∂w
∂ν = 0 on ∂U,∫
U w(x)dx = 0.

[30]
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3 You should attempt at most two from questions 2, 3, 4.

a) Prove the Lax–Milgram theorem for a bilinear form B defined on a real Hilbert
space H.

b) Let U ⊂ Rn be open and bounded with C∞ boundary, and let A : Rn → Mat(2×2)
be a real-valued matrix whose components are C∞(Ū). Consider the system of
elliptic equations

−∆φ+Aφ = F in U , (1)

where φ : Rn → R2 are the unknowns, ∆ =
∑n

i=1
∂2

∂x2
i

is the usual Laplacian acting

on each component of φ, and F : Rn → R2 is given. We suppose that φ is subject
to the boundary conditions

φ =
(
0 0

)T
on ∂U . (2)

(i) Define a weak solution for the equations (1) subject to the boundary
conditions (2), clearly identifying the space to which φ belongs.

Hint: it may be useful to use the notation v ∈ V 2 to denote a vector

v =
(
v1 v2

)T
whose components v1, v2 lie in a space V .

(ii) Show that if a weak solution is such that each component of φ is in C2(Ū),
then the equations (1), (2) hold classically.

(iii) The formal adjoint P † of a linear differential operator P is defined to satisfy

(Pu, v)L2(U) = (u, P †v)L2(U) ∀u, v ∈ C∞
c (U) .

Compute the formal adjoint for the operator L = −∆ + A appearing in (1)
and show that L = L† if and only if the matrix A is symmetric.

(iv) Suppose that A is a positive semi-definite matrix. Show that the equations
(1), (2) admit a unique weak solution for any F in an appropriate space that
you should specify. [30]
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4 You should attempt at most two from questions 2, 3, 4.

Let U ⊂ R3 be open, and bounded with smooth boundary, and let T > 0 be fixed. Define
UT := (0, T )×U , Σt := {t} ×U , ∂∗UT := [0, T ]× ∂U . Given ψ ∈ L2(U) and f ∈ L2(UT ),
a weak solution to the linear heat equation





∂u
∂t = ∆u+ f in UT

u = 0 on ∂∗UT
u = ψ on Σ0

(�)

is a function u ∈ L2((0, T );H1
0 (U)) such that

∫

UT

(−uvt +Du ·Dv)dxdt =

∫

Σ0

ψvdx+

∫

UT

fvdxdt

holds for all v ∈ H1(UT ) with v = 0 on ΣT . You may assume that for any ψ ∈ H1
0 (U) and

f ∈ L2(UT ), a unique weak solution exists satisfying

‖u‖L∞
t H1

x
:= ess sup

t∈(0,T )
‖u(t, ·)‖H1(U) 6 α(‖ψ‖H1(U) + ‖f‖L2(UT )),

for some constant α depending only on U, T .

a) Let w ∈ L∞((0, T );H1
0 (U)). Show that w3 ∈ L2(UT ) with

‖w3‖L2(UT ) 6 βT
1
2 ‖w‖3L∞

t H1
x

for some β > 0 depending only on U . If, further, w̃ ∈ L∞((0, T );H1
0 (U)), show that

‖w3 − w̃3‖L2(UT ) 6 γT
1
2 ‖w − w̃‖L∞

t H1
x
(‖w‖2L∞

t H1
x

+ ‖w̃‖2L∞
t H1

x
)

for some γ > 0 depending only on U .

b) Fix ψ ∈ H1
0 (U). Let Xb,τ = {u ∈ L∞((0, τ);H1

0 (U)) : ‖u‖L∞
t H1

x
6 b}. Let A be the

map which takes w ∈ Xb,τ to the unique weak solution in L∞((0, τ);H1
0 (U)) of (�)

with f given by f = −w3. Show that A : Xb,τ → Xb,τ is a contraction map provided
b > 0 is sufficiently large and 0 < τ < T is sufficiently small.

c) Deduce that the nonlinear heat equation:





∂u
∂t = ∆u− u3 in Uτ

u = 0 on ∂∗Uτ
u = ψ on Σ0

has a weak solution u ∈ L∞((0, τ);H1
0 (U)), provided τ is sufficiently small.

[30]
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